基于时频联合和加权决策的水声目标识别方法  

A hydroacoustic target recognition method based on joint time-frequency and weighted decision

在线阅读下载全文

作  者:潘晓英 冯天浩 孙乃葳 张无瑕 郑为 PAN Xiao-ying;FENG Tian-hao;SUN Nai-wei;ZHANG Wuxia;ZHENG Wei(School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi′an 710121,China;The 705 Research Institute of CSSC,Xi′an 710077,China)

机构地区:[1]西安邮电大学计算机学院,陕西西安710121 [2]中国船舶集团有限公司第七〇五研究所,陕西西安710077

出  处:《舰船科学技术》2024年第1期137-142,共6页Ship Science and Technology

基  金:海洋防务技术创新中心创新基金资助项目(No.JJ202170503)。

摘  要:由于水下环境的复杂性水声目标的识别一直是水声领域研究的热点。目前,基于深度学习的水声目标识别方法大多是基于单一的时域或者频域信号提取水声特征,而忽略了两者之间的时频互补信息,而时频互补信息有助于提高水声目标识别的精度。因此,本文同时从时域和频域角度出发,提出一种基于时频联合和加权决策的水声目标识别方法。该方法首先采用长短时记忆网络(LSTM)提取水声信号的时域特征进行识别,然后采用二维卷积神经网络(2D-CNN)提取水声信号的频域特征进行识别,最后将二者的识别结果进行加权决策融合。该方法的有效性在ShipEar数据集上进行验证,其识别精度达94.13%,高于其他现有方法。该方法为基于深度学习的水声目标识别方法的发展提供了新思路。Recognition of hydroacoustic targets has been a hot issue in the field of hydroacoustics due to the complexity of the underwater environment.At present,most of the deep learning-based hydroacoustic target recognition methods are based on a single time-domain or frequency-domain signal to extract hydroacoustic features,while ignoring the time-frequency complementary information between the two,which can help improve the accuracy of hydroacoustic target recognition.Therefore,this paper proposes a hydroacoustic target recognition method based on joint time-frequency features and weighted decision from both the perspective of time and frequency domains.The method firstly adopts long short term memory network(LSTM)to extract time domain features of hydroacoustic signals for recognition;then adopts two-dimensional convolutional neural network(2D-CNN)to extract frequency domain features of hydroacoustic signals for recognition;finally,the recognition results of both are weighted for decision fusion.The effectiveness of the method was verified on the ShipEar dataset,and its recognition accuracy reached 94.13%,which is higher than other existing methods.The method provides a new idea for the development of deep learning-based hydroacoustic target recognition methods.

关 键 词:水声目标识别 深度学习 加权决策 时频联合 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象