检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卫诚琨 周俊 WEI Chengkun;ZHOU Jun(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学机械与汽车工程学院,上海201620
出 处:《上海工程技术大学学报》2023年第4期397-403,共7页Journal of Shanghai University of Engineering Science
摘 要:物料搬运效率对智能车间的生产调度效率有着重要影响.物料搬运任务通常由自动导引车(Automated Guided Vehicle,AGV)执行,其具有数量多、任务需求实时变化、任务下达密集等特点.为及时、高效、准确地处理AGV搬运作业,提出基于强化学习的订单驱动下智能车间AGV调度模型,使用二级调度机制,第一级以负载均衡为目标,基于规则的调度方法对AGV进行任务分配;第二级运用强化学习深度Q网络(Deep Q-Network,DQN)算法对AGV进行单智能体下的搬运路径规划,通过减少智能体动作空间维数的方式,降低调度算法的收敛难度,并通过仿真实例验证该方法的有效性和创新性.Material transporting efficiency has an important impact on the production scheduling efficiency of the intelligent workshop.Material transporting tasks are usually executed by automated guided vehicle(AGV),which have large number of tasks,real-time changes in task demand,and intensive task issuance.In order to make the AGV workflow timely,efficient and accurate,an reinforcement-learning-based AGVs'scheduling model was established with a two-level mechanism.The first level aimes for load balancing,and assigns the tasks to AGVs in a rule-based scheduling method.The second level plans each AGV's path by a reinforcement learning deep Q-network(DQN)algorithm with single agent,which can reduce the convergence difficulty of the scheduling algorithm by reducing the dimensions of the agent's action space.The effectiveness and innovation of the method was verified through simulation examples.
关 键 词:AGV调度 路径规划 强化学习 深度Q网络 智能制造
分 类 号:TH165[机械工程—机械制造及自动化] TP271[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.25.60