检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长春大学机械与车辆工程,吉林长春130022
出 处:《装备制造技术》2024年第1期4-6,共3页Equipment Manufacturing Technology
基 金:吉林省科技厅项目(20230101208JC)。
摘 要:针对滚动轴承工作环境恶劣且采集到的振动信号具有非线性、非平稳性等特征,为了自适应提取故障特征以及提高轴承故障智能诊断准确率,提出基于鲸鱼算法(Whale Optimization Algorithm,WOA)优化变分模态分解(Variational Mode Decomposition,VMD)与卷积神经网络(Convolution Neural Network,CNN)相结合的故障诊断方法。首先,使用鲸鱼优化算法对VMD超参数进行寻优,找到VMD最优的分解层数与惩罚因子,并利用优化后的VMD对轴承原始信号进行分解。其次,用连续小波变换将分解得到的一维本征模态信号转化为相应的二维时频图。最后,将二维时频图作为二维卷积神经网络的输入,并对其输入的时频图进行深层特征提取与模式识别。实验表明,所提出的方法能高效提取故障特征,准确率高达99.78%。
关 键 词:鲸鱼算法 变分模态分解 连续小波变换 卷积神经网络
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143