检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于立富 李航 王天枢 孙威 YU Li-fu;LI Hang;WANG Tian-shu;SUN Wei(College of Environmental and Safety Engineering,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China;College of Chemical Engineering,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China)
机构地区:[1]沈阳化工大学环境与安全工程学院,辽宁沈阳110142 [2]沈阳化工大学化学工程学院,辽宁沈阳110142
出 处:《当代化工》2024年第1期200-204,共5页Contemporary Chemical Industry
基 金:辽宁省教育厅科学研究经费资助项目(项目编号:LQ2020024)。
摘 要:为准确预测油页岩干馏工艺过程粉尘爆炸风险等级,以加强油页岩粉尘爆炸事故防范能力,提出了一种快速精准的风险评估模型。按照4M分类原则将评价指标分为人、物、管理和环境4大类和30小项,采用随机森林(RF)对30项特征指标进行属性约简,进而提取关键指标;使用粒子群算法(PSO)对支持向量机(SVM)进行更新全局寻优,合理优化SVM的参数。通过随机选择30组评价数据进行测试,进行了RF-PSO-SVM模型与SVM模型、RF-SVM模型以及PSO-SVM模型对比。结果表明:该模型风险预测结果正确率最高且运行时间较短,识别准确率达93.33%,体现出该模型对油页岩干馏工艺粉尘爆炸风险预测的精准性和及时性。In order to accurately predict the dust explosion risk class of oil shale retorting process and strengthen the prevention ability of oil shale dust explosion accident,a fast and accurate risk assessment model was proposed.According to the 4M classification principle,the evaluation indexes were divided into 4 categories including human,material,management and environment and 30 items.The random forest(RF) was used to reduce the attributes of the 30 feature indexes,and then the key indexes were extracted.The particle swarm optimization algorithm(PSO) was used to update the global optimization of support vector machine(SVM) and optimize the parameters of SVM reasonably.By randomly selecting 30 groups of evaluation data for testing,the RF-PSO-SVM model was compared with SVM model,RF-SVM model and PSO-SVM model.The results showed that,the risk prediction result of this model had the highest accuracy and short running time,with the recognition accuracy of 93.33%,which reflected the accuracy and timeliness of this model in predicting dust explosion risk of oil shale retorting process.
分 类 号:X932[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13