检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张航 文斌[1] ZHANG Hang;WEN Bin(School of Information Science and Technology,Yunnan Normal University,Kunming 650500)
出 处:《计算机与数字工程》2023年第12期2929-2933,共5页Computer & Digital Engineering
摘 要:基于HMM+CRF词性标注的实体抽取方法从词性标注入手,对待处理文本先进行词性标注;然后根据文本的词性将实体抽取出来,在传统的CRF词性标注模型上增加一层HMM模型,提高实体抽取的精确度;最后在人民日报语料上进行实验,验证了准确率分别在基于HMM实体抽取模型和基于CRF实体抽取模型的基础上提高了2.1%和0.3%。The entity extraction method based on HMM+CRF part-of-speech tagging is injected from the part-of-speech tag.The text to be processed is first tagged with part-of-speech,and then entities are extracted according to the part-of-speech of the text.A layer of HMM model is added to the traditional CRF part-of-speech tagging model to improve the accuracy of entity extrac-tion.Finally,experiments are conducted on the corpus of People's Daily,which verifies that the accuracy rates are increased by 2.1%and 0.3%based on the HMM entity extraction model and the CRF entity extraction model.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15