基于IVPSIC-Net的小样本热轧钢带表面缺陷检测研究  被引量:4

在线阅读下载全文

作  者:任楚岚 闫精鲲 

机构地区:[1]沈阳化工大学计算机科学与技术学院,辽宁沈阳110142 [2]辽宁省化工过程工业智能化技术重点实验室,辽宁沈阳110142

出  处:《物联网技术》2024年第3期24-29,共6页Internet of things technologies

摘  要:针对钢带表面缺陷检测样本不足、检测精度较低等问题,提出IVPSIC-Net模型,不需要对缺陷图像扩增或合成,仅需较少的数据样本,即可对钢带表面缺陷进行较为准确的分类和分割。经由ImageNet数据集进行预训练,通过调整宽度因子、引入多层感知机和空洞卷积等对特征提取模块进行优化与改进。基于MobileNet121将训练得到的模型权重迁移至IVPSIC-Net模型,大幅度减少了模型计算量。结合位置信息,融合改进的自注意力机制实现对缺陷的有效检出。实验证明,模型对热轧钢带的6种典型表面缺陷均可较为准确地分类和分割。所提出的方法在分类任务中准确度达到85%,相较其他缺陷目标检测算法(YOLOv4、MPF-DNN、FAR-Net、PSIC-Net等)提升了4.79%~6.97%;在分割任务中,相较其他分割算法(Deeplabv3plus、VGG-Unet、RDUnet-A、PSIC-Net等),错误率降低了8.00%~20.03%,能够更准确地分割出钢带表面的缺陷区域。

关 键 词:钢带表面缺陷检测 小样本 PSIC-Net MobileNet 目标检测算法 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象