基于优化SVM模型的立铣刀在机崩刃监测技术研究  

Research on Monitoring Technology of End Milling Cutter Breaking in Machine Based on Optimized SVM Model

在线阅读下载全文

作  者:张曦[1] 周青峰 张龙佳 郑文妞 ZHANG Xi;ZHOU Qingfeng;ZHANG Longjia;ZHENG Wenniu

机构地区:[1]上海大学机电工程与自动化学院

出  处:《计量与测试技术》2024年第2期92-95,99,共5页Metrology & Measurement Technique

摘  要:随着加工精度要求不断提高,切削过程中,对刀具在机磨损或崩刃状态进行在机实时监测的需求日益增加。本文以声发射和主轴功率为监测信号,通过提取时域、频域和时频域的有效特征,构建了基于融合信号的平底立铣刀在机崩刃SVM监测模型;采用网格搜索、粒子群和遗传算法优化SVM模型参数,并在实际切削环境中,将平底立铣刀的崩刃监测效果进行对比。结果表明:基于遗传算法优化的SVM模型对铣刀崩刃状态监测效果最佳。With the continuous improvement of machining accuracy requirements,there is an increasing demand for real-time monitoring of tool wear or blade breakage during cutting.In this paper,acoustic emission and spindle power are used as monitoring signals.By extracting effective features in time domain,frequency domain and time-frequency domain,a SVM monitoring model based on fusion signal is constructed.Mesh search,particle swarm optimization and genetic algorithm were used to optimize SVM model parameters,and the monitoring effect of flat end milling cutter was compared in actual cutting environment.The results show that the SVM model based on genetic algorithm optimization has the best effect on the state monitoring of milling cutter breakage.

关 键 词:声发射 主轴功率 崩刃检测 遗传算法 SVM模型 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TG714[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象