检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘素珍 LIU Su-zhen(Nantong Normal College,Nantong 226500,China)
出 处:《数学的实践与认识》2024年第1期189-197,共9页Mathematics in Practice and Theory
摘 要:目前,人们在泰勒展开式的基础上提出了一种新的估算求解重根的迭代算法收敛半径的方法.这种方法已经估算了牛顿法的收敛半径,以及Osada算法和Halley算法求解重根的收敛半径,但是其计算的收敛半径都比较大.将在中心Holder条件下求解重根的Traub算法的收敛半径,并通过具体例子对计算结果进行比较,Traub算法的计算结果明显优于在同等条件下Osada和Halley算法的收敛半径.at present,people have proposed a new method to estimate the convergence ra-dius of iterative algorithm for solving multiple roots based on Taylor expansion.This method has estimated the convergence radius of Newton method and the convergence radius of Osada algorithm and Halley algorithm for solving multiple roots,but the calculated convergence radius is relatively large.This paper will solve the convergence radius of Traub algorithm with multiple roots under the central Holder condition,and compare the calculation results through specific examples.The calculation result of Traub algorithm is obviously better than that of Osada and Halley algorithm under the same conditions.
关 键 词:非线性方程重根 Traub算法 中心H?lder条件
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38