检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王承超 王湘江[1] WANG Chengchao;WANG Xiangjiang(School of Mechanical Engineering,University of South China,Hengyang 421001,China)
出 处:《机械工程师》2024年第3期38-43,共6页Mechanical Engineer
摘 要:为解决旋转机械故障类型多、等级不均衡的故障诊断难题,构建了一种基于ID3决策树与卷积神经网络(ID3-CNN)的故障诊断模型。首先对原始信号进行人工时域特征提取,使用t-SNE降维可视化提取出特征混叠的故障,而后利用卷积运算对特征混叠的故障进行二次特征提取,提高模型的特征表达能力,最后使用ID3决策树和卷积神经网络对不同等级的故障进行分类。在轴承数据集上对模型进行了验证,结果表明,严重故障的诊断准确率达到100%,轻微故障的诊断准确率达到95%。与传统的支持向量机及二维卷积神经网络比较,提高了模型的诊断准确率及特征提取能力。To solve the diagnostic problem of multiple rotating mechanical fault types and unbalanced grades,this paper constructs a fault diagnosis model based on ID3 decision tree and convolutional neural network(ID3-CNN).The original signal artificial time domain feature extraction is carried out,t-SNE dimension reduction visualization is used to extract feature overlapping fault.And then the feature aliasing fault secondary feature extraction is performed using the convolution operation to improve the feature expression ability of the model.Finally the ID3 decision tree and convolutional neural network is used to classify different levels of fault.The model is validated on the bearing dataset,and the results show that the diagnostic accuracy of severe faults reaches 100%,and the diagnostic accuracy of minor faults reaches 95%.Compared with the traditional support vector machine and two-dimensional convolutional neural network,the diagnostic accuracy and feature extraction ability of the model are improved.
关 键 词:旋转机械 故障诊断 特征提取 卷积神经网络 ID3决策树
分 类 号:TH133.3[机械工程—机械制造及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.25.32