检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤发源 赵永兴 刘晓亮[2] 赵欣[3] 王京华 TANG Fayuan;ZHAO Yongxing;LIU Xiaoliang;ZHAO Xin;WANG Jinghua(College of Mechanical and Electric Engineering,Changchun University of Science and Technology,Changchun 130022,China;Department of Hematology,the First Hospital of Jilin University,Changchun 130021,China;Department of Pediatric Respiratory,the First Hospital of Jilin University,Changchun 130021,China)
机构地区:[1]长春理工大学机电工程学院,吉林长春130022 [2]吉林大学第一医院血液科,吉林长春130021 [3]吉林大学第一医院小儿呼吸科,吉林长春130021
出 处:《传感器与微系统》2024年第3期115-119,124,共6页Transducer and Microsystem Technologies
基 金:国家基金“111”计划资助项目(D17017);吉林大学白求恩第一医院成果转化基金资助项目(JDYZH-2102036)。
摘 要:针对现有基于人体骨架跌倒检测设备要求高的问题,提出了一种基于轻量级OpenPose生成骨架特征的跌倒检测方法。首先,基于轻量级OpenPose网络检测人体关键点,利用人体部分关键点生成边界框,并对关键点坐标进行标准化处理,将边界框的纵横比和标准化后的关键点坐标作为表示人体姿态的特征向量。最后,将人体姿态特征向量作为多层感知机(MLP)的输入,判断人体是否发生跌倒。实验结果表明,基于单目相机采集图片构造的自定义跌倒数据集,网络可以实现98.64%的跌倒检测准确率,并且在CoreTMi5—9300H CPU上达到20fps的检测速度。Aiming at the high requirements of existing fall detection equipment based on human skeleton,a fall detection method based on lightweight OpenPose generating skeleton features is proposed.Firstly,the keypoints of the human body are detected based on the lightweight OpenPose network.The partial keypoints of the human are used to generate the bounding box,and the coordinates of the keypoints are normalized processing.The aspect ratio of the bounding box and the standardized keypoints coordinates as feature vectors representing human pose.Finally,the human body pose feature vector is used as the input of the multilayer perceptron(MLP)to determine whether the human body falls or not.The experimental results show that the network can achieve fall detection accuracy rate of 98.64%based on the customed fall dataset constructed by the images collected by the monocular camera and can achieve a detection speed of 20 fps on the CoreTM i5-9300H CPU.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200