基于注意力机制语义分割网络的大坝裂缝检测方法  

Dam crack detection method based on attention mechanism semantic segmentation network

在线阅读下载全文

作  者:王泽焘 WANG Zetao(GEPIC Hexi Hydropower Development Co.,Ltd.,Zhangye 734000,China)

机构地区:[1]甘肃电投河西水电开发有限责任公司,甘肃张掖734000

出  处:《水利建设与管理》2024年第2期39-44,共6页Water Conservancy Construction and Management

摘  要:为提高大坝裂缝检测的效率和精度,解决传统大坝裂缝检测技术人工劳动强度大、存在人身安全隐患的问题,本文提出一种基于图像视觉信息的人工智能裂缝检测技术,设计了基于注意力机制的语义分割网络,在U形网络中引入了多头注意力机制网络结构,将移动网络V3编码器提取的特征图在多尺度上经多头注意力机制模块特征强化与解码器结果进行融合输出,精确识别裂缝对象,采用数学形态学腐蚀膨胀操作计算裂缝的几何特征。实验表明,得到的裂缝图像轮廓清晰、连续无锯齿、走向与实际相符,具有较好的检测精度。本文方法在检测大坝裂缝时省时省力、不受地形环境制约、部署方便,在准确识别大坝裂缝以及对大坝裂缝病险进行综合评判时具有一定价值。In order to improve the efficiency and accuracy of dam crack detection while addressing the issues of high manual labor intensity and personal safety risks associated with traditional methods,this paper proposes an artificial intelligence crack detection technique based on image visual information.It introduces an attention mechanism-based semantic segmentation network with a multi-head attention mechanism network structure incorporated into the U-shaped network.This approach enhances the features extracted by the MobileNetV3 encoder at multiple scales using multi-head attention mechanism modules and fuses them with the decoder results to accurately identify crack objects.Mathematical morphological operations,such as erosion and dilation,are applied to calculate the geometric characteristics of the cracks.Experimental results demonstrate that the obtained crack image contours are clear,continuous without jagged edges,and consistent with reality,showcasing good detection accuracy.This method is efficient and convenient for detecting dam cracks,is not constrained by the terrain environment,and is easy to deploy.It holds certain value in accurately identifying dam cracks and providing comprehensive assessments of potentially hazardous dam cracks.

关 键 词:大坝裂缝检测 注意力机制 特征提取 形态学 

分 类 号:TV698.1[水利工程—水利水电工程] TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象