检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:党宇 陈丽[1] DANG Yu;CHEN Li(Shenyang University of Technology,Shenyang 110870,China)
机构地区:[1]沈阳工业大学,辽宁沈阳110870
出 处:《智能物联技术》2023年第3期18-27,共10页Technology of Io T& AI
摘 要:相对于结构化道路来说,非结构化道路的道路特征更少。针对非结构化道路分割问题,本文在UNet模型的基础上,采用加深网络层数和引入ECA注意力机制提高模型的特征提取能力,并在编码阶段融入残差网络代替原模型中的VGG16,在瓶颈阶段加入ASPP扩大模型感受野,在解码阶段加入深度监督模块获得图像各层特征信息,使最后的分割结果更加精准。在非结构化道路数据集上的实验结果表明,本文方法的准确率和平均交并比分别为97.55%和83.22%,比原UNet模型和DeeplabV3模型的性能更好。Compared with structured road,unstructured road has fewer road features and more complex environment.Aiming at the segmentation of unstructured road,a deeper layer of network was adopted and ECA attention mechanism was introduced to improve the feature extraction ability of the model based on UNet.Residual network was integrated into the coding stage of the model to replace VGG16.ASPP was added to expand the receptive field at the bottleneck stage of the model and the depth supervision module was added in the decoding stage of the model to obtain the feature information of each layer of the image,to make the final segmentation results more accurate.The experimental results on the unstructured road data set showed that the accuracy and average intersection ratio of the proposed method were 97.55%and 83.22%,which were higher than the original UNet model and DeeplabV3 model.
关 键 词:UNet 道路分割 特征提取 残差网络 深度监督
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175