检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:屈博 郑向涛[1] 钱学明[2] 卢孝强[1] QU Bo;ZHENG Xiangtao;QIAN Xueming;LU Xiaoqiang(Key Laboratory of Spectral Imaging Technology CAS,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China;School of Information and Communication Engineering,Xi’an Jiaotong University,Xi’an 710049,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院西安光学精密机械研究所光谱成像技术实验室,西安710119 [2]西安交通大学信息与通信工程学院,西安710049 [3]中国科学院大学,北京100049
出 处:《遥感学报》2024年第1期42-54,共13页NATIONAL REMOTE SENSING BULLETIN
基 金:陕西省重点研发计划(编号:2020ZDLGY04-03)。
摘 要:随着航空航天技术与遥感技术的不断发展,遥感影像在诸多领域的应用不断拓展,其中高光谱分辨率遥感影像具有“图谱合一”的特点,即该数据既包含了具有强大区分性的地物光谱信息,又包含了丰富的地物空间位置信息,因此高光谱数据具有非常大的应用潜力。高光谱异常目标检测问题,是在对目标先验信息未知的前提下,根据光谱与空间信息实现对区域中的异常目标的进行“盲”检测,因此其在资源调查、灾害救援等领域发挥了巨大的作用,是遥感领域非常重要的研究课题。本文针对高光谱遥感影像异常目标检测研究方向,首先总结阐述了目前高光谱异常目标检测问题的主要研究进展,根据算法原理的不同对现有主流算法进行了分类与总结,主要分成了基于统计学、基于数据表达、基于数据分解、基于深度学习等不同的种类的方法,并对每类方法的特点进行分析。随后通过对现有方法的调研、分析与总结,提出了数据库拓展、多源数据融合、算法实用化等高光谱异常检测研究未来发展的3个方向。The applications of remote sensing images in numerous fields have been increasing with the continuous development of aerospace and remote sensing technologies.HyperSpectral Image(HSI)is a common type of remote sensing image that comprises a series of two-dimensional remote sensing images as a 3D data cube.Each two-dimensional image in HSI can reveal the reflection/radiation intensity of different wavelengths of electromagnetic waves,and each pixel of HSI corresponds to the spectral curve reflecting the spectral information in different wavelengths.Therefore,the hyperspectral remote sensing images are characterized by“spatial-spectral integration,”which contains not only spectral information with strong discriminant but also rich spatial information.Therefore,the hyperspectral data have considerable application potential.Hyperspectral anomaly detection aims to detect pixels in a scene with different characteristics from surrounding pixels and determines them as anomalous targets without any previous knowledge of the target.Hyperspectral anomaly detection is an unsupervised process that does not require any priori information regarding the target to be measured in advance;thus,this type of detection plays a crucial role in real life.For example,anomaly target detection technology can be used to search and rescue people after a disaster,quickly determine the fire point of a forest fire,and search mineral points in mineral resource exploration.Hyperspectral anomaly detection has been a popular research direction in the area of remote sensing image processing in recent years,and a numerous researchers have conducted extensive research and achieved rich research results.However,hyperspectral anomaly detection still encounters many difficult problems.For example,the targets of the same material may exhibit various spectral characteristics due to the different imaging equipment and environment,which may interfere with the detection results and lead to the problem of“same object with different spectra.”Meanwhile,t
关 键 词:遥感 高光谱遥感 高光谱异常检测 深度学习 矩阵分解
分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置] P2[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15