检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄志敏 彭世强 HUANG Zhimin;PENG Shiqiang(Guangzhou Chinagdn Security Technology Co.,Ltd.,Guangzhou 510665,China)
机构地区:[1]广州竞远安全技术股份有限公司,广东广州510665
出 处:《电子质量》2024年第1期10-15,共6页Electronics Quality
摘 要:随着互联网的发展,网络安全问题是互联网发展所面临的一个严峻挑战,网络入侵检测技术成为其中需要重点关注的问题。特别是随着攻击手段的进一步多样化和数据维度的不断增加,传统的机器学习算法已不能满足目前网络入侵检测系统的要求。卷积神经网络(CNN)具有强大的特征提取能力和数据分析能力,可以提高网络入侵检测的准确性和时效性。因此将CNN应用到网络入侵检测技术中,并通过交叉熵损失函数达到提升检测准确率的目的。首先,对公开数据集进行预处理;然后,构建CNN模型获取分类预测结果;最后,计算模型评价指标,并不断调整CNN模型,直到模型评价指标达到期望值。With the development of the Internet,cybersecurity is a serious challenge for the development of the Internet,and network intrusion detection technology has become one of the issues that need to be focused on.Especially with the further diversification of attack methods and the continuous increase of data dimension,the traditional machine learning algorithms can no longer meet the requirements of current network intrusion detection system.Convolutional neural networks(CNN)have powerful feature extraction capabilities and data analysis capabilities,which can improve the accuracy and timeliness of network intrusion detection.Therefore,CNN is applied to network intrusion detection technology,and the detection accuracy is improved through the cross entropy loss function.Firstly,the public dataset is preprocessed.Then,the CNN model is constructed to obtain the classification prediction results.Finally,the model evaluation index is calculated,and the CNN model is continuously adjusted until the expected value of the model evaluation index is reached.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145