检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张伟进 王福顺[1,2] 孙小华 王军皓[1] 刘宏权[4] 王鑫鑫[5,6] Zhang Weijin;Wang Fushun;Sun Xiaohua;Wang Junhao;Liu Hongquan;Wang Xinxin(College of Information Science and Technology,Hebei Agricultural University,Baoding,071001,China;Hebei Key Laboratory of Agricultural Big Data,Baoding,071000,China;Department of Digital Media,Hebei Software Institute,Baoding,071000,China;College of Urban and Rural Construction,Hebei Agricultural University,Baoding,071001,China;Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province,Baoding,071001,China;Agricultural Engineering Technology Research Center of National North Mountainous Area,Baoding,071001,China)
机构地区:[1]河北农业大学信息科学与技术学院,河北保定071001 [2]河北省农业大数据重点实验室,河北保定071000 [3]河北软件职业技术学院数字传媒系,河北保定071000 [4]河北农业大学城乡建设学院,河北保定071001 [5]河北省山区农业技术创新中心,河北保定071001 [6]国家北方山区农业工程技术研究中心,河北保定071001
出 处:《中国农机化学报》2024年第2期280-287,共8页Journal of Chinese Agricultural Mechanization
基 金:财政部和农业农村部:国家现代农业产业技术体系—食用豆(CARS—08—G—22);河北省高等学校科学技术研究计划(QN2020421)。
摘 要:传统图像分割算法以时间、空间复杂度低等优点在农作物籽粒考种领域中有着广泛的应用。对传统分割算法在农作物表型获取过程中的应用进行研究,首先阐述Otsu、分水岭、边缘检测、SLIC算法以及凹点分析算法的算法原理,对种皮颜色灰度均匀、形状不同的农作物籽粒,以“问题—方法”的模式阐述不同算法在应用中存在的问题以及相应的解决方法;接着将算法基于阈值、区域、边缘、聚类、凹点整合为五大类,对算法的分割效果、优缺点及其适用范围进行比较研究;最后,剖析农作物籽粒图像分割应用研究存在农作物种类覆盖度不够宽泛、图像分割精度不高、技术通用性不高等问题,并从算法精度提高、重叠遮挡处理等方面对未来的研究进行展望,以期为农作物籽粒考种过程中的图像分割研究提供参考。Traditional image segmentation algorithm has been widely used in the field of crop seed testing because of its low complexity in time and space.The application of traditional segmentation algorithm in the crop phenotype extraction was studied in this paper.Firstly,the algorithm principles of Otsu,watershed,edge detection,SLIC and concave point analysis algorithm were expounded.For crop seeds with uniform seed coat color and different shapes,the problems in the application of different algorithms and the corresponding solutions were described in the model of‘problem-method’.Then the algorithms were integrated into five categories based on threshold,region,edge,cluster and concave point,and the segmentation effect,advantages and disadvantages and application range of the algorithm were compared.Finally,the problems in the application of crop seed image segmentation were analyzed,and the future research directions were prospected from algorithm accuracy improvement and overlapping occlusion processing,in order to provide reference for the research of image segmentation in the process of crop seed testing.
分 类 号:TP391[自动化与计算机技术—计算机应用技术] S375[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.135.69