检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘煜博 吐松江·卡日[1] 伊力哈木·亚尔买买提[1] 张淑敏 崔传世 LIU Yubo;TUSONGJIANG Kari;YILIHAMU Yaermaimaiti;ZHANG Shumin;CUI Chuanshi(School of Electrical Engineering,Xinjiang University)
机构地区:[1]新疆大学电气工程学院
出 处:《仪表技术与传感器》2024年第2期36-43,共8页Instrument Technique and Sensor
基 金:国家自然科学基金项目(52067021);新疆维吾尔自治区自然科学基金面上项目(2022D01C35);新疆维吾尔自治区优秀青年科技人才培养项目(2019Q012)。
摘 要:针对现有仪表读数方法易受光照不均等因素影响,而导致读数误差大的问题,提出一种基于深度学习的全自动指针式仪表读数方法。首先,引入YOLOv7网络提取表盘区域;其次,采用文中提出的VCA-UNet(VGG16Net,improved skip connections and ASPP based U-Net)网络用于分割刻度线和指针;最后,引入PP-OCRv3网络自动获取仪表量程,并利用角度法确定仪表示数。实验结果表明:VCA-UNet网络的MIoU和MPA值较U-Net网络分别提升18.48%和9.36%,且普遍高于其他经典分割网络,仪表读数的平均相对误差为0.614%,且泛化实验的读数绝对误差相对较小,验证了读数方法的准确性和泛化性。Aiming at the problem that the existing instrument reading methods are easily affected by unequal illumination factors,which leads to large reading errors,a fully automatic pointer instrument reading method based on deep learning was proposed.First,the YOLOv7 network was introduced to extract the dial area.Secondly,the VCA-UNet(VGG16Net,Improved Skip Connections and ASPP based U-Net)network proposed in this paper was used to separate the scale and pointer.Finally,the PP-OCRv3 network was introduced to obtain the instrument range automatically,and the instrument representation number was determined by angle method.The experimental results show that the MIoU and MPA values of VCA-UNet network are 18.48%and 9.36%higher than those of U-Net network respectively,and are generally higher than other comparison networks.The average relative error of meter reading is 0.614%,and the absolute error in the generalization experiment is relatively small,which verifies the accuracy and generalization of the reading method.
关 键 词:指针式仪表 读数识别 语义分割 YOLOv7 U-Net PP-OCRv3
分 类 号:TH703[机械工程—仪器科学与技术] TP391[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15