检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高路尧 胡长虹[1] 肖树林 GAO Luyao;HU Changhong;XIAO Shulin(Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院长春光学精密机械与物理研究所,长春130033 [2]中国科学院大学,北京100049
出 处:《吉林大学学报(理学版)》2024年第2期357-368,共12页Journal of Jilin University:Science Edition
基 金:吉林省与中国科学院科技合作高技术产业化项目(批准号:2020SYHZ0028);2021年吉林省预算内基本建设基金(批准号:2021C045-3)。
摘 要:针对卷积神经网络(CNN)仅能应用于欧氏数据,无法有效获取像素间的全局关系特征以及长距离上下文信息的问题,构建一个基于超像素分割的图注意力网络SSGAT.该网络将超像素分割后的超像素块视为图结构中的图节点,有效减少了图结构的复杂度,并降低了分类图的噪声.在3个数据集上对SSGAT及对比算法的分类精度进行测试,分别获得了94.11%,95.22%,96.37%的总体分类精度.结果表明该方法性能优异,在处理大尺度区域的分类问题时优势明显.Aiming at the problem that convolutional neural network(CNN)could only be applied to Euclidean data and could not effectively obtain global relationship features between pixels and long-distance contextual information,we constructed a superpixel segmentation-based graph attention network(SSGAT).The network treated the segmented superpixel blocks as graph nodes in the graph structure,effectively reducing the complexity of the graph structure and reducing the noise of the classification graph.The classification accuracy of SSGAT and the comparison algorithm were tested on three datasets,and overall classification accuracy of 94.11%,95.22%,and 96.37%were obtained,respectively.The results show that the method has excellent performance and significant advantages in dealing with classification problems in large-scale regions.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222