UNCONDITIONAL ERROR ANALYSIS OF VEMS FOR A GENERALIZED NONLINEAR SCHRODINGER EQUATION  

在线阅读下载全文

作  者:Meng Li Jikun Zhao Shaochun Chen 

机构地区:[1]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou,Henan 450001,China

出  处:《Journal of Computational Mathematics》2024年第2期500-543,共44页计算数学(英文)

基  金:supported by the NSF of China(Grant Nos.11801527,11701522,11771163,12011530058,11671160,1191101330);by the China Postdoctoral Science Foundation(Grant Nos.2018M632791,2019M662506).

摘  要:In this work,we focus on the conforming and nonconforming leap-frog virtual element methods for the generalized nonlinear Schrodinger equation,and establish their unconditional stability and optimal error estimates.By constructing a time-discrete system,the error between the solutions of the continuous model and the numerical scheme is separated into the temporal error and the spatial error,which makes the spatial error τ-independent.The inverse inequalities in the existing conforming and new constructed nonconforming virtual element spaces are utilized to derive the L^(∞)-norm uniform boundedness of numerical solutions without any restrictions on time-space step ratio,and then unconditionally optimal error estimates of the numerical schemes are obtained naturally.What needs to be emphasized is that if we use the pre-existing nonconforming virtual elements,there is no way to derive the L^(∞)-norm uniform boundedness of the functions in the nonconforming virtual element spaces so as to be hard to get the corresponding inverse inequalities.Finally,several numerical examples are reported to confirm our theoretical results.

关 键 词:Conforming and nonconforming Virtual element methods Leap-frog scheme Generalized nonlinear Schrodinger system Unconditionally optimal error estimates 

分 类 号:O241.1[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象