检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨婧 辛明勇 宋强 YANG Jing;XIN Ming-yong;SONG Qiang(Guizhou Power Grid Co.,Ltd.,Guiyang 550002 China;Electric Power Research Institute of Guizhou Power Grid Co.,Ltd.,Guiyang 550002 China)
机构地区:[1]贵州电网有限责任公司,贵州贵阳550002 [2]贵州电网有限责任公司电力科学研究院,贵州贵阳550002
出 处:《自动化技术与应用》2024年第3期74-77,共4页Techniques of Automation and Applications
摘 要:电力设备局部放电能耗异常,会产生连锁反应导致出现重大故障情况,威胁设备运行安全,为此研究一种基于实时数据流特征提取的设备能耗异常识别算法。采集设备实时状态,利用双层可视窗口对多组设备数据流聚类分析,设备状态间满足马尔科夫链性关系,通过模型映射节点关系,计算转移概率提取放电特征,凭借核函数分解设备产生局部放电异常时的实际放电量、视在功率、放电均方率及平均放电电流,结合不同电磁波信号强弱的时间差,识别出能耗异常点位置。仿真实验证明所提算法在加压情况下也能精准识别异常点位置,适用性强、鲁棒性好。The abnormal partial discharge energy consumption of power equipment causes a chain reaction to cause major failures and threaten the safety of equipment operation.Therefore,an abnormality identification algorithm based on real-time data stream feature extraction is studied.It collects the real-time status of the equipment,and uses the double-layer visual window to cluster and analyzes the data streams of multiple groups of equipment.The equipment states satisfy the Markov chain relationship.Through the model mapping node relationship,the transition probability is calculated to extract the discharge characteristics,and the equipment is decomposed by the kernel function.The actual discharge amount,apparent power,electric mean square rate and average discharge current when abnormal partial discharge occurs,combined with the time difference of different electromagnetic wave signal strengths,it identifies the location of abnormal energy consumption.Simulation experiments show that the proposed algorithm can accurately identify the location of abnormal points even under pressure,and has strong applicability and robustness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91