基于贝叶斯神经网络的船用惯导定位修正方法  被引量:1

Ship inertial navigation system position correction method based on Bayesian neural network

在线阅读下载全文

作  者:周红进[1] 宋辉[1] 范文良[2] 王苏[1] 谷东亮 ZHOU Hongjin;SONG Hui;FAN Wenliang;WANG Su;GU Dongliang(Department of Navigation,Dalian Naval Academy,Dalian 116018,China;Department of Information Technology,National Prosecutors College of P.R.C,Beijing 102206,China)

机构地区:[1]海军大连舰艇学院航海系,辽宁大连116018 [2]国家检察官学院信息技术部,北京102206

出  处:《系统工程与电子技术》2024年第4期1393-1400,共8页Systems Engineering and Electronics

摘  要:船用惯性导航系统(inertial navigation system, INS)通常采用与全球卫星导航系统(global navigation satellite system, GNSS)组合导航的方式提高其长时间工作的定位精度。当GNSS失效时,其定位误差将随时间迅速发散。针对这一问题,设计了采用反向传播神经网络(back propagate neural network, BPNN)、根据INS原始输出数据拟合修正经纬度的定位修正方案,提出了基于Bayesian算法更新网络权重系数的方法,结合理论分析和试验研究确定了神经元个数与训练数据集的分配方案。实船试验结果表明,当GNSS失效时,在后续2 h,通过24 h历史数据训练得到的神经网络修正INS位置,相比INS独立工作时的定位误差,修正后误差均值下降了63%,误差最大值下降约50%,最小值下降至0。Ship inertial navigation system(INS)usually integrate with global navigation satellite system(GNSS)to improve its long term position performance.Once GNSS disables,the position error will diverge fast with time.In order to improve INS’long term position accuracy while GNSS disables,a position correction scheme is proposed using back propagation neural network(BPNN)to fit and correct longitude and latitude based on the INS’origin data,and the network’s weigh value is updated based on the Bayesian algorithm.While according to the general theory to calculate the number of neurons,the best number of neurons and training sample distribution are determined via a number of experiments.The real ship test results show that while GNSS disables,in the next two hours,neural net correction inertial navigation position obtained by historical data of 24 h is more accurate than the independent-working INS’correction inertial navigation position,the position mean error decrease 63 percent,the maximum error decrease 50 percent and the minimal error decrease to 0.

关 键 词:惯性导航系统 全球卫星导航系统失效 反向传播神经网络 Bayesian算法 定位误差 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象