检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任晓松[1,2,3] 李昭睿 REN Xiao-song;LI Zhao-rui(School of Management Science and Engineering,Shanxi University of Finance and Economics,Taiyuan 030031,China;School of Management and Economics,Beijing Institute of Technology,Beijing 100081,China;Center for Energy and Environmental Policy Research,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]山西财经大学管理科学与工程学院,太原030031 [2]北京理工大学管理与经济学院,北京100081 [3]北京理工大学能源与环境政策研究中心,北京100081
出 处:《环境科学》2024年第3期1243-1253,共11页Environmental Science
基 金:国家社会科学基金后期资助项目(22FGLB051);山西省回国留学人员科研教研项目(2022-131);山西省社科联重点研究项目(SSKLZDKT2023086)。
摘 要:基于全生命周期视角核算2011~2019年中国省际建筑碳排放量,采用社会网络分析方法,探究碳排放空间关联网络演化及其影响因素.结果表明:(1)中国建筑碳排放空间关联网络形态明显存在,网络密度和网络关联数逐渐上升,网络紧密性和稳定性逐渐提高.(2)上海、浙江、天津、北京和江苏处于碳排放空间关联网络的核心和支配地位.(3)北京、天津、江苏、内蒙古、上海和山东属于“净受益”板块,接收其他地区的建筑碳排放;广东、重庆、福建和浙江属于“经纪人”板块,实现了建筑碳排放生产端和消费端的动态平衡;其余省份均扮演“净溢出”角色,主动向外省发出建筑碳排放量.板块间的关联关系远大于板块内部的关联关系.(4)经济发展、空间邻接关系、城镇化、建筑业过程结构和产业结构差异对建筑碳排放空间关联产生显著影响.研究结果可为建筑业区域协同减排提供参考.Based on the whole life cycle perspective,the carbon emissions of the provincial construction industry in China from 2011 to 2019 were calculated from the production,construction,operation,and demolition stages of building materials.A spatial correlation network matrix of the carbon emissions in the construction industry was constructed by using the modified gravity model,and the structural characteristics of the correlation network were described by introducing social network analysis.Through the quadratic assignment program,the spatial correlation matrix of carbon emissions in the construction industry and its influencing factors were regressed and analyzed.The conclusions were as follows:①the spatial correlation network of carbon emissions in China’s construction industry clearly existed.The network density and network correlation numbers were gradually rising,and the network tightness and stability were gradually improving.②Shanghai,Tianjin,Beijing,and Jiangsu had a higher degree centrality and closeness centrality,which are the core and dominant positions of the spatial correlation network of carbon emissions in the construction industry.Zhejiang replaced Shanghai in the top four from 2013 to 2018,and the betweenness centrality of each province had unbalanced characteristics.③Beijing,Tianjin,Jiangsu,Inner Mongolia,Shanghai,and Shandong were“net beneficiaries”blocks,receiving the carbon emissions from other regions.Four provinces,Guangdong,Chongqing,Fujian,and Shandong,belonged to the“broker”sector,achieving a dynamic balance between the production and consumption sides of building carbon emissions.The remaining 20 provinces played a“net spillovers”role,actively sending carbon emissions from the construction industry to other provinces.The correlation between blocks was much greater than the correlation relationship within the blocks.④Industrial structure,urban population,spatial adjacency,consumption level,and construction industry process structure had a significant influence on the sp
关 键 词:建筑碳排放 引力模型 空间关联 社会网络分析 二次指派程序
分 类 号:X24[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229