基于二元三次B样条拟插值的反应-扩散方程数值解  

Numerical Solutions of Reaction-Diffusion Equations Based on Bivariate Cubic B-spline Quasi-Interpolation

在线阅读下载全文

作  者:钱江[1] 陈雨青 刘雯星 QING Jiang;CHEN Yuqing;LIU Wengxing(College of Science,Hohai University,Nanjing 210024,Jiangsu;Foshan Gaoming District No.1 Middle School,Foshan 528599,Guangdong)

机构地区:[1]河海大学理学院,江苏南京210024 [2]佛山市高明区第一中学,广东佛山528599

出  处:《四川师范大学学报(自然科学版)》2024年第3期411-421,共11页Journal of Sichuan Normal University(Natural Science)

基  金:河海大学中央高校业务费基金项目(2019B19414);海岸灾害与防护教育部重点实验室开放基金(202011)。

摘  要:反应-扩散方程在科学和工程的许多分支中有着重要的应用,对此类方程数值解的研究具有重要意义.鉴于计算域的复杂形状、大量的自由度等导致计算非常困难,提出张量积型二元三次B样条法求解一类分数阶反应-扩散方程和交叉反应扩散系统,首先计算得出二元三次B样条拟插值的矩阵表达式,然后利用Matlab进行数值模拟,最后将数值模拟解与精确解进行对比.研究表明,当变量t的迭代次数较低时,所提方法行之有效.Reaction-diffusion equations have important applications in many branches of science and engineering.Therefore,it is of great significance to study the numerical solutions of such equations.In view of the complex shape for the computational domain and a large number of degrees of freedom,the calculation is very difficult.The tensor-product-typed bivariate cubic B-spline method is proposed to solve a class of fractional reaction-diffusion equations and cross-reaction-diffusion systems.First,the matrix expression of the bivariate cubic B-spline quasi-interpolation is calculated.Second it is numerically simulated by Matlab.Finally,the numerical simulation solution is compared with the exact solution,which shows that the method presented is effective when the number of iterations of the variables is low.

关 键 词:反应-扩散方程 B样条拟插值 张量积型 数值模拟 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象