检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔婀娜[1] 杨春娜 王晓煜[3] 沙宪政[2] 赵鹏[3] 孙艺瑶 CUI E-nuo;YANG Chun-na;WANG Xiao-yu;SHA Xian-zheng;ZHAO Peng;SUN Yi-yao(School of Intelligent Science and Engineering,Shenyang University,Shenyang 110044,China;School of Intelligent Medicine,China Medical University,Shenyang 110122,China;Department of Medical Imaging,Liaoning Cancer Hospital,Shenyang 110801,China)
机构地区:[1]沈阳大学智能科学与工程学院,辽宁沈阳110044 [2]中国医科大学智能医学学院,辽宁沈阳110122 [3]辽宁省肿瘤医院医学影像科,辽宁沈阳110801
出 处:《中国临床医学影像杂志》2024年第3期153-159,共7页Journal of China Clinic Medical Imaging
基 金:国家重点研发项目BTIT(2022YFF1202803);辽宁省教育厅面上项目(JYTMS20230132)。
摘 要:目的:本研究基于脑部T_(1)C和T_(2)W MRI建立人工智能模型,预测肺癌脑转移患者在靶向治疗中的耐药性T790M突变。方法:本研究收集80例肺癌脑转移患者(2017年6月—2019年12月)的T_(1)C和T_(2)W MRI影像和临床数据进行回顾性分析(患者按照2∶1的比例分成训练集和测试集)。采用无监督k-means算法将肿瘤区域划分为高亮度区域和低亮度区域,提取不同区域的影像组学图像特征构建模型,评估每个模型的诊断效果。绘制受试者工作特征(Receiver operating characteristic,ROC)曲线,计算ROC曲线下面积(Area under curve,AUC)、特异性和敏感性作为模型评价指标,分析模型的潜在临床应用价值。结果:对T_(1)C和T_(2)W MRI和临床特征融合的统计计算表明,本研究建立的模型对T790M突变具有良好的预测能力,在训练集和测试集上的AUC分别为0.899和0.818。结论:本研究建立的计算机模型可以有效预测肺癌脑转移患者T790M突变,具有潜在的临床辅助诊断价值。Objective:In this study,an artificial intelligence model was established based on contrast-enhanced T_(1)-weighted(T_(1)C)and T_(2)-weighted(T_(2)W)sequences of brain MRI to predict drug-resistant T790M mutations in lung cancer brain metastasis patients undergoing targeted therapy.Methods:In this study,T_(1)C and T_(2)W MRI imaging data and clinical data of 80 lung cancer brain metastasis patients(from June 2017 to December 2019)were collected for retrospective analysis(the data was divided into training and validation cohorts in a ratio of 2∶1).The unsupervised k-means algorithm was used to segment the tumor region into high-brightness and low-brightness subregions,and the radiomics features of every subregion were extracted to establish a model to evaluate the diagnostic performance of every model.Receiver operating characteristic(ROC)curves were plotted,and the area under the curve(AUC),specificity and sensitivity were used as evaluation metrics to analyze the potential clinical application value of the model.Results:Statistical calculations combining T_(1)C and T_(2)W MRI and clinical features showed that the model established in this study had good predictive ability for T790M mutation,with AUCs of 0.899 and 0.818 in the training and testing sets,respectively.Conclusion:The computer model established in this study can effectively predict the T790M mutation in lung cancer brain metastasis patients and has potential clinical auxiliary diagnostic value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.22.238