检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:司智勇 Zhiyong SI(School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo,454003,China)
机构地区:[1]School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo,454003,China
出 处:《Acta Mathematica Scientia》2024年第2期650-670,共21页数学物理学报(B辑英文版)
基 金:supported by the National Natural Science Foundation of China(12126318,12126302).
摘 要:This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
关 键 词:time-dependent Ginzburg-Landau equation generalized scalar auxiliary variable algorithm maximum bound principle energy stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62