检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范睿博 FAN Ruibo(Architectural Engineering Institute,Zhengzhou Business University,Gongyi Henan 451200,China)
机构地区:[1]郑州商学院建筑工程学院,河南巩义451200
出 处:《信息与电脑》2023年第24期19-21,共3页Information & Computer
摘 要:当前,联合卷积神经网络与长短期记忆深度网络的桥梁损伤识别方法、基于模糊推理的桥梁损伤识别方法对桥梁进行损伤识别时费时费力,且容易受外界因素干扰,使得桥梁损伤识别效果较差,为此提出基于应变式传感器的公路桥梁损伤智能识别方法。首先提取桥梁损伤特征参量,其次根据该参量的连续性确定桥梁损伤位置,最后基于应变式传感器对公路桥梁损伤进行定量分析。实验结果表明,与参考文献所提方法对比,研究所用的工况损伤识别结果更接近桥梁实际损伤工况,精确率较高,具有较好的识别效果。At present,the bridge damage identification method combining convolutional neural network with longterm and short-term memory depth network and the bridge damage identification method based on fuzzy reasoning are timeconsuming and laborious,and are easily disturbed by external factors,which makes the bridge damage identification effect poor.Therefore,an intelligent road bridge damage identification method based on strain sensor is proposed.Firstly,the characteristic parameters of bridge damage are extracted,and then the location of bridge damage is determined according to the continuity of the parameters.Finally,the damage of highway bridges is quantitatively analyzed based on strain sensors.The experimental results show that,compared with the literature method,the damage identification results of the three working conditions under this method are closer to the actual damage conditions of the bridge,which shows that this method has high accuracy and good identification effect.
分 类 号:TP212.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.132.105