检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘颖 张守京 胡胜 LIU Ying;ZHANG Shoujing;HU Sheng(Xi'an Polytechnic University,Xi'an,710048,China)
机构地区:[1]西安工程大学,陕西西安710048
出 处:《棉纺织技术》2024年第4期1-7,共7页Cotton Textile Technology
基 金:西安市现代智能纺织装备重点实验室(2019220614SYS021CG043)。
摘 要:针对传统的反演模型精度不高且传统BP神经网络有权值和阈值初值过于随机化、稳定性和准确性差等问题,提出了基于改进麻雀搜索算法(ISSA)的BP神经网络纺纱生产工艺参数反演模型。利用灰色关联分析法提取出10个关键工艺参数,以其作为模型输入;引入Chebyshev混沌映射、正余弦算法(SCA)和自适应权重因子对麻雀搜索算法(SSA)进行优化,并用ISSA优化BP神经网络,在此基础上构建纺纱生产工艺参数反演模型;利用ISSA对参数反演模型进行求解。以纤维属性和纺纱车间细纱工序为对象进行反演验证,试验结果表明:ISSA-BP预测值的MAPE、MSE、MAE、迭代次数、适应度值均优于SSA-BP模型;对反演优化后的工艺参数进行预测,预测的质量指标与期望质量指标的平均相对误差(MRE)为5.04%。认为:基于ISSA-BP神经网络的纺纱生产工艺参数反演精度较高,有助于工艺参数的合理设计。In order to solve the problems of lower accuracy of traditional inversion model,excessive randomization of weights and initial threshold values,worse stability and accuracy of traditional BP(back propagation)neural network,a parameter inversion model for spinning production process of BP neural network based on improved sparrow search algorithm(ISSA)was proposed.Ten key process parameters were extracted by grey relational analysis and used as model input.Chebyshev chaotic map,sine cosine algorithm(SCA)and adaptive weight factor were introduced to optimize sparrow search algorithm(SSA).And BP neural network was optimized by the improved sparrow search algorithm(ISSA).On this basis,the parameter inversion model of spinning production process was constructed.ISSA was used to solve the parameter inversion model.Inversion verification was carried out with fiber property and spinning workshop as objects.The experimental results showed that the MAPE,MSE,MAE,iteration time and fitness of ISSA-BP predicted values were all better than those of SSA-BP model.The process parameters after inversion optimization were forecasted.The mean relative error(MRE)between predicted quality index and expected quality index was 5.04%.It is considered that the inversion precision of spinning process parameters based on ISSA-BP neural network is higher,which is helpful to the reasonable design of process parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15