检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄洋 刘国辉 郭立新[1] HUANG Yang;LIU Guohui;GUO Lixin(College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;Chart Information Center,Tianjin 300450,China)
机构地区:[1]上海海洋大学海洋科学学院,上海201306 [2]海图信息中心,天津300450
出 处:《海洋测绘》2024年第1期79-82,共4页Hydrographic Surveying and Charting
摘 要:为进一步提高识别、提取和应用航海通告信息的效率和准确性,基于对深度学习的自然语言处理技术及中文电子航海通告文本特点的研究,通过语料标注、搭建、调参、训练与评价了5种命名实体识别模型,得出CNN-BiLSTM-CRF模型的识别精确率、召回率等主要指标达到70%以上,能够适应复杂的通告内容及其语境干扰,是目前最优的航海通告命名实体识别模型的结论。应用该模型可为航海通告内容的自动化、智能化提取,高效编制及快速与准确应用提供一种新的技术方法。In order to further improve the efficiency and accuracy of identifying,extracting and applying marine notice information,based on the research of natural language processing technology of deep learning and the characteristics of Chinese electronic marine notice text,this paper constructs,adjusts,trains and evaluates five named entity recognition models through corpus annotation.It is concluded that the main indicators such as recognition accuracy and recall rate of CNN-BiLSTM-CRF model reach more than 70%,which can adapt to the complex notice content and its context interference,and is the current optimal marine notice named entity recognition model.The application of this model can provide a new technical method for the automation,intelligent extraction,efficient compilation and rapid and accurate application of marine notice content.
关 键 词:航海通告 命名实体 自然语言处理 深度学习 神经网络
分 类 号:P28[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7