检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:单天婵 郑伟[1] 陈洁[1] SHAN Tianchan;ZHENG Wei;CHEN Jie(National Satellite Meteorological Center,Beijing 100081,China)
机构地区:[1]国家卫星气象中心,北京100081
出 处:《遥感学报》2024年第2期375-384,共10页NATIONAL REMOTE SENSING BULLETIN
基 金:国家重点研发计划(编号:2021YFC3000300);国家卫星气象中心2021年度青年人才基金(编号:412666)。
摘 要:利用遥感技术获取过火区信息对生态环境监测具有重要意义,其中高分辨率数据更适合提取小范围过火区。目前已有多种利用国外火点产品结合遥感影像提取过火区的研究。为了增强国产遥感数据火情监测能力,提高小范围过火区的提取效率和精度,基于过火前后2幅GF-1 WFV影像和多时相FY-3D MERSI火点产品开展过火区提取研究。2处研究区分别位于四川省凉山彝族自治州木里藏族自治县和西昌市。首先根据火点与过火区形成的关系,结合火点的时间、空间和光谱特征,筛选并扩充火点像元,确定过火区粗略范围;然后确定每种地表类型的分割阈值,分类过火像元和非过火像元;最后剔除周边小斑块,得到过火区提取结果。以人机交互方式获得的过火区参考真值作验证,并与神经网络分类法提取过火区的结果作对比。结果表明本文方法的过火区提取结果精度要明显高于神经网络分类法,Kappa系数达到0.82。该方法可以充分结合GF-1 WFV影像和FY-3D MERSI火点产品数据的优势,降低样本像元选择时间成本和不确定性,快速准确地提取小范围过火区。未来可考虑通过选择更高精度的火点产品,结合实地考察验证对该方法改进完善。Using remote-sensing technology to obtain information about burned areas is important for ecological environment monitoring.High-resolution data are more suitable for extracting small-scale burned areas.To develop the fire monitoring ability of domestic remotesensing data and improve the extraction efficiency and accuracy of a small-scale burned area,two GF-1 WFV images(before and after fires)and multi temporal FY-3D MERSI fire products are used to extract burned areas for two study areas,respectively,located in the Tibetan Autonomous County of Muli and Xichang City,Sichuan Province.The method is primarily divided into two parts:rough extraction and fine extraction.In rough extraction,according to the relationship between fire points and the formation of burned areas,the fire-point pixels are selected and expanded into the rough range of burned areas by combining temporal,spatial,and spectral characteristics.Temporal characteristic refers to fire points with concentrated occurrence time that easily form burned areas;spatial characteristic refers to fire points with concentrated location that easily form burned areas,and burned pixels are usually adjacent to fire-point pixels;spectral characteristics refer to pixels with higher NDVI difference before and after fire,which may be burned pixels.In fine extraction,the land-cover types included in the burned area are determined according to the number of fire-point pixels.The segmentation threshold is determined using the iterative-threshold method for each land-cover type.Burned pixels and unburned pixels in each land-cover type are classified using the segmentation threshold.The small patches are removed to obtain the result of burned-area extraction.The reference true values are obtained by human-computer interaction for verification.The results of burned areas extracted by neural network classification are compared with the result of the proposed method.Our results show that the accuracy of burned areas detected by the proposed method is higher than that by neural
关 键 词:遥感 过火区 火点监测产品 FY-3D MERSI GF-1 WFV NDVI 阈值分割
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222