检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王新静[1] 段晨鑫 姚怡烨 WANG Xinjing;DUAN Chenxin;YAO Yiye(North China University of Water Resources and Electric Power,Zhengzhou 450046,China)
出 处:《河南科技》2024年第4期4-8,共5页Henan Science and Technology
摘 要:【目的】基于现代建筑物点云数据面片特征,提出一种基于随机抽样一致算法的平面分割识别方法。【方法】该方法先利用三维格网划分来建立空间格网单元,再根据随机采样点来确定局部格网单元,通过随机机制来拟合平面模型,经过局部打分来确定候选模型集,利用法向约束和共面分割来解决过分割和欠分割的问题。【结果】采用该方法可获取当前最优模型和一致集,并完成点云分割。【结论】试验结果表明,该方法能对富有平面特征的建筑物进行有效分割。[Purposes]According to the patch characteristics of modern building point cloud data,a plane segmentation recognition method based on random sampling consistent algorithm is proposed in this paper.[Methods]In this method,the spatial grid element is established by three-dimensional grid division,and then the local grid element is determined according to the random sampling points,the plane model is fitted by random mechanism,and the candidate model set is determined by local scoring.Normal constraints and coplanar segmentation are used to solve the problems of over-segmentation and insufficient segmentation.[Findings]Finally,the current optimal model and consistent set are obtained,and the point cloud segmentation can be completed.[Conclusions]The experimental results show that this method can segment the buildings with plane features effectively.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.55.178