检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈熙源[1] 周云川 钟雨露 戈明明 Chen Xiyuan;Zhou Yunchuan;Zhong Yulu;Ge Mingming(School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China)
机构地区:[1]东南大学仪器科学与工程学院,南京210096
出 处:《仪器仪表学报》2024年第1期120-129,共10页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(61873064);江苏省重点研发计划(BE2022139)项目资助。
摘 要:复杂环境下的量测粗差和时变噪声严重影响了状态估计的精度和可靠性,对此提出了一种基于变分贝叶斯的鲁棒自适应因子图优化组合导航算法。首先,基于先验和后验两阶段更新将变分贝叶斯推断引入因子图优化框架中,以估计时变量测噪声协方差;其次,利用相邻帧间的平均新息构造量测协方差预测值,作为粗差判据来实现稳健估计。基于INS/GNSS组合导航的仿真和现场实验评估表明,所提方法能在粗差干扰的情况下有效估计时变量测噪声,相比M估计和滑动窗口自适应因子图优化算法的水平定位误差分别减小了26.7%和39.8%,兼顾了估计精度和抗差性能,具有较好的复杂环境适应性。The accuracy and reliability of state estimation are seriously affected by measurement outliers and time-varying noise in complex environments.To address these issues,a robust adaptive factor graph optimization(FGO)integrated navigation algorithm based on variational Bayesian is proposed.First,the variational Bayesian inference is introduced into the FGO framework based on a priori and a posteriori two-stage updating to estimate the time-varying measurement noise covariance.Secondly,the mean innovation between neighboring keyframes is used to construct measurement covariance prediction as an outlier judgment to achieve robust estimation.Simulation and field tests based on INS/GNSS integrated navigation show that the proposed method can effectively estimate the time-varying measurement noise covariance in the presence of outlier interference,and reduce the horizontal position error by 26.7%and 39.8%compared to the M-estimation and sliding window adaptive FGO algorithms,which takes into account the accuracy and robust performance.It has an excellent adaptation to complex scenarios.
关 键 词:因子图优化 变分贝叶斯 组合导航 鲁棒自适应估计
分 类 号:TH89[机械工程—仪器科学与技术] TN96[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3