基于卷积神经网络的12 Cr1MoV钢金相组织球化级别智能化分析  

Intelligent Analysis of 12Cr1MoV Steel Metallographic Structure Sphericity Level Based on Convolutional Neural Network

在线阅读下载全文

作  者:赵隆 韩小稚 王景人 寇威 Zhao Long;Han Xiaozhi;Wang Jingren;Kou Wei(Shaanxi Special Equipment Inspection and Testing Institute, Xi'an 710048)

机构地区:[1]陕西省特种设备检验检测研究院,西安710048

出  处:《中国特种设备安全》2024年第3期80-83,共4页China Special Equipment Safety

摘  要:为了高效准确地评定火电厂12Cr1MoV钢金相组织的球化级别,先对原始金相组织图像进行灰度值归一化和图像去噪等处理,建立金相组织图像数据库,再采用4种不同的卷积神经网络模型对金相组织图像进行分类识别,开发了金相组织智能分析软件。实验结果表明:Inception-v3模型识别12Cr1MoV钢金相组织的球化级别的准确度可达到93%。开发的智能分析软件可以自动、准确和高效地评定球化级别,为火电厂锅炉材料检验提供了更可靠的金相分析工具。In order to efficiently and accurately evaluate the sphericity level of 12Cr1MoV steel in thermal power plant,the original metallograph tissue images were normalized and denoised,and the metallographic tissue image database was established,and then four different convolutional neural network models were used to classify and identify the metalgraphic tissue image,and the metallographic tissue intelligent analysis software was developed.The experimental results show that the Inception-v3 model can identify the sphericity level of the metallographic organization of 12Cr1MoV steel with an accuracy of 93%.The intelligent analysis software can assess the sphericity level automatically,accurately and efficiently,providing a more reliable metallographic analysis tool for boiler material inspection in thermal power plant.

关 键 词:金相组织 深度学习 卷积神经网络 图像处理 

分 类 号:X933.2[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象