基于改进YOLO v5的苹果采摘机器人目标检测方法  被引量:6

Target Detection Method of Apple Harvesting Robot Based on Improved YOLO v5

在线阅读下载全文

作  者:胡仕林 陈伟[1] 张境锋 魏庆宇 金学广 Hu Shilin;Chen Wei;Zhang Jingfeng;Wei Qingyu;Jin Xueguang(School of Electronic and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China;Changzhou Information Vocational and Technical College,Changzhou 213164,China)

机构地区:[1]江苏科技大学电子信息学院,江苏镇江212003 [2]常州信息职业技术学院,江苏常州213164

出  处:《农机化研究》2024年第6期48-55,共8页Journal of Agricultural Mechanization Research

基  金:江苏省现代农业项目(BE2020406);常州市科技支撑计划(农业)项目(CE20212025);镇江市国际科技合作项目(GJ202009)。

摘  要:为实现复杂环境中苹果采摘机器人目标快速检测,克服传统YOLO v5网络结构复杂、计算性能弱的缺点,提出了一种基于深度可分离卷积YOLO v5的采摘机器人目标检测方法。在采集苹果样本图像并制作实验数据集后,进行模型训练和测试,引入深度可分离卷积YOLO v5网络对苹果图像进行特征提取,解决了网络中参数冗余问题,提高了采摘机器人的识别速度;采用CIoU-Loss损失函数和DIoU-NMS非极大值抑制方法,对损失函数进行优化,提升了机器人视觉系统对苹果的定位精度。机器人采摘试验结果表明:算法检测精度达95.8%,检测速度达53帧/s,机器人单次采摘时间为4.7s,采摘成功率达93.9%。检测方法在减少模型参量的同时可保证检测精度和效率,具有较强的工程实用性。In order to achieve rapid detection of apple picking robot targets in complex environments,and overcome the shortcomings of traditional YOLO v5 network structure and weak computing performance,a target detection method based on depthwise separable convolution YOLO v5 is proposed.After collecting apple sample images and making experimental data sets,model training and testing are performed,and a depthwise separable convolutional YOLO v5 network is introduced to extract features from apple images,which solves the problem of parameter redundancy in the network and improves the recognition speed of picking robots;The CIoU-Loss loss function and the DIoU-NMS non-maximum suppression method are used to optimize the loss function and improve the positioning accuracy of the robot vision system for apples.The results of the robot picking experiment show that the detection accuracy of the algorithm is 95.8%,the detection speed is 53 frames per second,the single picking time of the robot is 4.7s,and the picking success rate is 93.9%.The detection method can ensure detection accuracy and efficiency while reducing model parameters,and has strong engineering practicability.

关 键 词:苹果采摘机器人 目标检测 YOLOv5 深度可分离卷积 

分 类 号:S225[农业科学—农业机械化工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象