检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱惠敏 毛邱凌 陈实 韩怡星 吕本杰 Qian Huimin;Mao Qiuling;Chen Shi;Han Yixing;Lyu Benjie(College of Artificial Intelligence&Automation,Hohai University,Nanjing 211106,China)
机构地区:[1]河海大学人工智能与自动化学院,南京211106
出 处:《计算机应用研究》2024年第4期1221-1227,共7页Application Research of Computers
摘 要:生成对抗网络(generative adversarial network,GAN)已成为图像生成问题中常用的模型之一,但是GAN的判别器在训练过程中易出现梯度消失而导致训练不稳定,以致无法获得最优化的GAN而影响生成图像的质量。针对该问题,设计满足Lipschitz条件的谱归一化卷积神经网络(CNN with spectral normalization,CSN)作为判别器,并采用具有更强表达能力的Transformer作为生成器,由此提出图像生成模型TCSNGAN。CSN判别器网络结构简单,解决了GAN模型的训练不稳定问题,且能依据数据集的图像分辨率配置可调节的CSN模块数,以使模型达到最佳性能。在公共数据集CIFAR-10和STL-10上的实验结果表明,TCSNGAN模型复杂度低,生成的图像质量优;在火灾图像生成中的实验结果表明,TCSNGAN可有效解决小样本数据集的扩充问题。GAN has become one of the commonly-used image generation models.However,the discriminator of GAN is prone to the vanishing gradient problem in the training process,which leads to the instability of training.So that it is difficult to obtain the optimal GAN,and the quality of generation image is poor.To solve this problem,it designed a CNN with spectral normalization which satisfied the Lipchitz condition as the discriminator.Together with the Transformer generator,this paper proposed an image generation model,namely TCSNGAN(Transformer CSN GAN).The network structure of discriminator was simple,which could solve the problem of training instability of GAN model,and could configure the number of adjustable CSN modules according to the image resolution of data sets to achieve the optimal performance of the model.Experiments on public datasets CIFAR-10 and STL-10 show that the proposed TCSNGAN model has low complexity,and the generated image quality is good.And the experiments of fire image generation task demonstrates the effectiveness of small-sample dataset augmentation.
关 键 词:生成对抗网络 图像生成 TRANSFORMER Lipschitz判别器
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90