检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东省生态环境监测中心,广东广州510308
出 处:《资源节约与环保》2024年第3期55-59,共5页Resources Economization & Environmental Protection
摘 要:水体污染会造成水中营养物质过剩,藻类大量繁殖,从而加速水体富营养化。本文对水质自动监测数据的水温(T)、pH、溶解氧(DO)、电导率(W_cond)、浊度(Turb)、高锰酸盐指数(COD_(Mn))、氨氮(NH_(3)-N)、总磷(TP)、总氮(TN)9个因子进行分析,建立预测叶绿素a(Chl-a)浓度的BP神经网络预测模型,并对样本数据做主成分分析得出前5个主成分累计贡献率达83.59%,通过不同变量的网络模型筛选出pH、DO和TP是预测Chl-a浓度的3个主要影响因子。结果表明,模型预测值和实测值相关系数R2达到0.972,为Chl-a浓度预测提供了一种环保、安全、可靠的技术方法。
关 键 词:BP神经网络 叶绿素a(Chl-a) 蓝藻水华 预测模型
分 类 号:X524[环境科学与工程—环境工程] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222