一种通道自适应与局部增强的Transformer术中血压预测方法  

A Transformer Intraoperative Blood Pressure Prediction Method Based on Channel Adaptation and Local Enhancement

在线阅读下载全文

作  者:王尘 蔡晶晶[4] 郝学超 张伟义[4] 舒红平[1,3] 王亚强[1,2,3] 陈果[4] WANG Chen;CAI Jingjing;HAO Xuechao;ZHANGWeiyi;SHU Hongping;WANG Yaqiang;CHEN Guo(School of Software Engineering,Chengdu University of Information Technology,Chengdu 610225;Institute of Data Science and Engineering,Chengdu University of Information Technology,Chengdu 610225;Automatic Software Generation and Intelligent Service,Chengdu University of Information Technology,Chengdu 610225;Department of Anesthesiology,Sichuan University,Chengdu 610044)

机构地区:[1]成都信息工程大学软件工程学院,成都610225 [2]成都信息工程大学数据科学与工程研究所,成都610225 [3]成都信息工程大学软件自动生成与智能服务实验室,成都610225 [4]四川大学华西医院麻醉手术中心,成都610044

出  处:《计算机与数字工程》2024年第1期43-50,98,共9页Computer & Digital Engineering

基  金:四川大学华西医院“学科卓越发展1·3·5工程”交叉学科创新项目(编号:2023H022);四川大学华西医院1·3·5项目(编号:ZYJC21008);国家重点研发计划项目(编号:2018YFC2001800)资助。

摘  要:准确预测术中患者的血压状态来预防术中低血压,对提高手术安全性和降低术后并发症有积极作用,以往的低血压预测方法主要视为二分类任务,忽略了患者血压变化的过程,从而限制了干预策略的制定。因此提前预测血压的变化趋势,具有更重要的临床研究和应用价值。针对以上问题,对通过监测的术中生理序列实时预测未来5min、10min、15min血压的连续值展开研究,并提出了一种通道自适应与局部增强Transformer模型,该模型采用卷积注意力机制捕捉血压序列的局部相似性,同时提出一种通道自适应模块嵌入模型来建模生理序列潜在交互关系。结果表明,该模型相比于基准模型在5min、10min、15min预测精度分别提升4.88%、8.2%和8.42%,预测的平均动脉压的MAE分别为2.997、3.393、3.743,且显著优于其余对比模型,为术中血压预测提供新的解决方案。Accurately predicting the intraoperative blood pressure status of patients to prevent intraoperative hypotension has a positive effect on improving surgical safety and reducing postoperative complications.Previous hypotension prediction methods were mainly regarded as binary classification tasks,ignoring the process of patient blood pressure changes,thus limiting the formu-lation of intervention strategies.Therefore,predicting the change trend of blood pressure in advance has more important clinical re-search and application value.In this study,it focuses on the real-time prediction of future blood pressure values at 5min,10min and 15min using monitored intraoperative physiological sequences.A Channel-Adaptive and Locally-Enhanced Transformer model is proposed,which captures the local similarity of blood pressure sequences using convolutional attention mechanisms and incorpo-rates a Channel-Adaptive module to model the underlying interactions in physiological sequences.Experimental results show that the proposed model achieves significant improvements in prediction accuracy at 5min,10min and 15min,with respective increases of 4.88%,8.2%and 8.42%compared to the baseline model.The Mean Absolute Error(MAE)for predicted mean arterial pressure is 2.997,3.393 and 3.743,respectively,outperforming other comparative models significantly.The findings provide a new solution for intraoperative blood pressure prediction.

关 键 词:术中血压预测 TRANSFORMER 生理序列 注意力机制 通道自适应 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象