检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟健 熊文豪 周寒 张晓倩 刘天琦 高贤君[2] MENG Jian;XIONG Wenhao;ZHOU Han;ZHANG Xiaoqian;LIU Tianqi;GAO Xianjun(School of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083;School of Geociences,Yangtze University,Wuhan 430100;Region Surveying and Mapping Geographic Information Center,Hohhot 010050;College of Geology and Mining Engineering,Xinjiang University,Urumqi 830047)
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083 [2]长江大学地球科学学院,武汉430100 [3]内蒙古自治区测绘地理信息中心,呼和浩特010050 [4]新疆大学地质与矿业工程学院,乌鲁木齐830047
出 处:《计算机与数字工程》2024年第1期206-212,共7页Computer & Digital Engineering
基 金:长江大学2020年大学生创新创业训练计划(编号:Yz2020018)资助。
摘 要:地表植被作为人类自然生态系统的一个重要组成部分,在减轻土壤侵蚀、维持生态平衡、提高防风固沙能力,以及维持局部区域经济可持续发展等许多方面都发挥着重要的主导作用。近年来,卫星遥感技术凭借其大范围、多尺度、多时相的优势,已经成为一种低成本、高效率的植被覆盖估计算法,在植被提取和变化监测中表现出了重要的应用价值。论文以榆林市毛乌素沙漠地区为主要研究区域,利用手机可视化虚拟图像处理环境(Environment for Visualizing Images,ENVI)分析软件对landsat8遥感影像进行地表植被的信息提取,采用不同的监督分类方法对植被信息进行分类提取,并对不同的监督分类结果进行质量精度分析评定。结果表明,神经网络方法较其他方法在沙漠植被提取方面表现出较优的性能,可以实现对沙漠植被的动态变化监测。As an important part of the human natural ecosystem,surface vegetation plays an important leading role in many as-pects,such as reducing soil erosion,maintaining ecological balance,improving windbreak and sand fixation capacity,and main-taining sustainable regional economic development.In recent years,satellite remote sensing technology has become a low-cost and high-efficiency vegetation cover estimation algorithm with its advantages of large-scale,multi-scale and multi-temporal phases,and has shown important application value in vegetation extraction and change monitoring.In this paper,the Mu Us Desert area of Yulin city is taken as the main research area,and the information of surface vegetation is extracted from landsat8 remote sensing im-ages by using the environment for visualizing images(ENVI)analysis software of mobile phones,and the vegetation information is classified and extracted by different supervised classification methods,and the quality accuracy of different supervised classification results is analyzed and evaluated.The results show that the neural network method has better performance than other methods in des-ert vegetation extraction,and can realize the dynamic change monitoring of desert vegetation.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28