检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈玲宏 赵顗 王祉祈 SHEN Linghong;ZHAO Yi;WANG Zhiqi(Department of Rail Traffic Engineering,Suzhou Higher Vocational Technical School of Construction and Transportation,Suzhou 215009;School of Automotive and Traffic Engineering,Nanjing Forestry University,Nanjing 210037)
机构地区:[1]苏州建设交通高等职业技术学校轨道交通工程系,苏州215009 [2]南京林业大学汽车与交通工程学院,南京210037
出 处:《计算机与数字工程》2024年第1期294-300,共7页Computer & Digital Engineering
摘 要:城市道路周边用地性质的不同导致短时发生和吸引交通量的差异,直接影响城市道路网上的交通流。论文对城市路网中各地块的发生和吸引交通量进行短时预测,将预测的交通量通过动态交通分配到城市路网中,以此实现城市路网短时动态交通预测。将单一的BP神经网络模型为对比模型,对模型进行训练及参数标定,并检验模型的预测效果。实验结果表明,论文所提的预测方法与BP神经网络相比,预测精度最高可提升84.28%。The difference of land use nature around urban roads leads to the difference of short-time occurrence and attraction traffic volume,which directly affects the traffic flow on the urban road network.This paper makes short-time prediction of occur-rence and attraction traffic volume of each plot in the urban road network,and allocates the predicted traffic volume to the urban road network through dynamic traffic,so as to realize short-time dynamic traffic prediction of the urban road network.The single BP neural network model is used as the comparison model,and the model is trained and parameter calibrated,and the prediction effect of the model is tested.The experimental results show that the prediction accuracy of the proposed prediction method can be improved by up to 84.28%compared with that of BP neural network.
关 键 词:短时交通预测 小波分析 神经网络 交通分配 组合预测模型
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.73.161