检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晨晖 吕国军 王秀敏[1,2] 畅国平 WANG Chen-hui;LYU Guo-jun;WANG Xiu-min;CHANG Guo-ping(National Field Scientific Observation and Research Station for Huge Thick Sediments and Seismic Disasters in Hongshan,Xingtai 054000,Hebei,China;Xingtai Central Seismic Station of Hebei Earthquake Agency,Xingtai 054000,Hebei,China;Hebei Earthquake Agency,Shijiazhuang 050031,Hebei,China)
机构地区:[1]河北红山巨厚沉积与地震灾害国家野外科学观测研究站,河北邢台054000 [2]河北省地震局邢台地震监测中心站,河北邢台054000 [3]河北省地震局,河北石家庄050031
出 处:《内陆地震》2024年第1期63-69,共7页Inland Earthquake
基 金:河北省地震科技星火计划项目(DZ2021121600001,DZ2023120800022);河北省重点研发计划(22375406D)。
摘 要:针对地震震级影响因子众多且关系重复等问题,为合理预测地震震级,提出了基于网格搜索法优化支持向量机(support vector machine,SVM)的地震震级预测模型。选取地震累积频度、累积释放能量、b值、异常震群个数、地震条带个数、活动周期和相关区震级等7个影响因子,利用主成分分析法(principal component analysis,PCA)去除因子间的冗余信息,降低输入维数,并利用网格搜索法(grid search method,GSM)确定SVM参数C和g,建立震级预测模型,并对测试样本进行预测,与遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization,PSO)预测结果相对比,结果表明:PCA-GSM-SVM模型预测结果平均相对误差为1.29%,具有较高的预测精度。In view of numerous and redundant factors affecting earthquake magnitude,in order to predict earthquake magnitude effectively,a seismic magnitude prediction model based on support vector machine(SVM)optimized by grid search method was proposed.Selecting 7 influencing factors,including cumulative earthquake frequency,cumulative released energy,b-value,number of abnormal earthquake swarms,number of seismic bands,activity period,and magnitude of related areas.Principal component analysis(PCA)was used to remove redundant information between factors,and the input dimensions was reduced,and grid search method(GSM)was used to determine SVM parameters C and g,finally the magnitude prediction model was established,which was used to predict test samples,and compared with the prediction results of Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).The results showed that the average relative error of PCA-GSM-SVM was 1.29%,which had higher prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249