STGNN-LMR:A Spatial–Temporal Graph Neural Network Approach Based on sEMG Lower Limb Motion Recognition  

在线阅读下载全文

作  者:Weifan Mao Bin Ma Zhao Li Jianxing Zhang Yizhou Lu Zhuting Yu Feng Zhang 

机构地区:[1]Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China [2]University of Chinese Academy of Sciences,Beijing 101408,China [3]University of Science and Technology of China,Hefei 230026,China [4]Shanghai Zhongyan Jiuyi Technology Co.,Ltd.,Shanghai 201821,China [5]Academy of Military Science,Bejing 100091,China

出  处:《Journal of Bionic Engineering》2024年第1期256-269,共14页仿生工程学报(英文版)

摘  要:Lower limb motion recognition techniques commonly employ Surface Electromyographic Signal(sEMG)as input and apply a machine learning classifier or Back Propagation Neural Network(BPNN)for classification.However,this artificial feature engineering technique is not generalizable to similar tasks and is heavily reliant on the researcher’s subject expertise.In contrast,neural networks such as Convolutional Neural Network(CNN)and Long Short-term Memory Neural Network(LSTM)can automatically extract features,providing a more generalized and adaptable approach to lower limb motion recognition.Although this approach overcomes the limitations of human feature engineering,it may ignore the potential correlation among the sEMG channels.This paper proposes a spatial–temporal graph neural network model,STGNN-LMR,designed to address the problem of recognizing lower limb motion from multi-channel sEMG.STGNN-LMR transforms multi-channel sEMG into a graph structure and uses graph learning to model spatial–temporal features.An 8-channel sEMG dataset is constructed for the experimental stage,and the results show that the STGNN-LMR model achieves a recognition accuracy of 99.71%.Moreover,this paper simulates two unexpected scenarios,including sEMG sensors affected by sweat noise and sudden failure,and evaluates the testing results using hypothesis testing.According to the experimental results,the STGNN-LMR model exhibits a significant advantage over the control models in noise scenarios and failure scenarios.These experimental results confirm the effectiveness of the STGNN-LMR model for addressing the challenges associated with sEMG-based lower limb motion recognition in practical scenarios.

关 键 词:Lower limb motion recognition EXOSKELETON sEMG.Graph neural network Noise Sensor failure 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象