新闻传播模型中网络社团的自动检测  

Automatic detection of network communities in the news communication model

在线阅读下载全文

作  者:徐素云[1,2] 王茜 张一帆 XU Suyun;WANG Xi;ZHANG Yifan(Xi’an Jiaotong University City College,Xi’an 710018;Xi’an Jiaotong University,Xi’an 710049)

机构地区:[1]西安交通大学城市学院,西安710018 [2]西安交通大学,西安710049

出  处:《自动化与仪器仪表》2024年第3期50-54,共5页Automation & Instrumentation

基  金:陕西省社会科学基金一般项目《全媒体时代陕西国际形象建构及外宣策略研究》(2019M019);陕西省教育科学“十四五”规划2021年度课题《陕西高校大学生对外传播中国文化能力现状分析及拓展路径研究》(SGH21Y0421)。

摘  要:随着社会的不断进步和网络技术的发展,新闻传播模型中网络社团的规模不断加大,网络结构更加复杂。本研究探讨了多目标进化算法原理,分析了网络社团的结构,提出了基于社团结构节点属性信息的多目标进化社团自动检测算法(Automatic detection algorithm of multi-objective evolutionary community MOEA-AT)。测试结果表明,MOEA-AT算法的NMI,AC和Q的平均值分别为0.95、0.92、0.89,各指标的均值较高,在实际网络中表现较好。应用于真实网络时,MOEA-AT算法将网络划分成2~5个社团,且社团之间界限较为清楚。由此可知,MOEA-AT算法对网络社团的自动检测有更高的精度且稳定性更高,并且在新闻传播领域有一定的现实意义和经济价值。With the continuous progress of the society and the development of the network technology,the scale of the network community in the news communication model is increasing,and the network structure is more complex.In this study,we analyzed the structure of network community structure,analyzed the principle of multi-objective evolution algorithm,and proposed the automatic detection algorithm(Automatic detection algorithm of multi-objective evolutionary community MOEA-AT)based on the node information attribute of community structure.The test results show that the NMI,AC and Q of MOEA-AT algorithm mean value are 0.95,0.92 and 0.89 respectively,and the mean value of each index is high and performs well in the real network.When applied to the actual network,the MOEA-AT algorithm divides the real network into 2-5 associations,and the boundary between the associations is relatively clear.It can be seen that MOEA-AT algorithm has higher accuracy and better stability for the automatic detection of network associations,and has certain practical significance and economic value in the field of news communication.

关 键 词:MOEA-AT算法 社团结构 模块度 NMI 精度 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象