检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒙西 王岩 孙子健[1,2,3] 乔俊飞 MENG Xi;WANG Yan;SUN Zijian;QIAO Junfei(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Laboratory of Smart Environmental Protection,Beijing 100124,China;Engineering Research Center of Intelligence Perception and Autonomous Control,Ministry of Education,Beijing 100124,China)
机构地区:[1]北京工业大学信息学部,北京100124 [2]智慧环保北京实验室,北京100124 [3]智能感知与自主控制教育部工程研究中心,北京100124
出 处:《化工学报》2024年第2期593-603,共11页CIESC Journal
基 金:国家重点研发计划项目(2019YFC1906004-2);国家自然科学基金项目(622731013,61890930-5,62021003,62001012)。
摘 要:氮氧化物(nitrogen oxides,NO_(x))浓度的实时精准检测是实现脱硝过程闭环控制的前提,对提高城市固废焚烧(municipal solid waste incineration,MSWI)过程脱硝效率具有重要意义。为此,提出了一种基于注意力模块化神经网络(attention modular neural network,AMNN)的MSWI过程NO_(x)排放预测方法。首先,模拟脑网络“分而治之”处理复杂任务的特性,利用模糊C均值(fuzzy C-means,FCM)聚类算法将待预测任务划分为多个子任务,从而降低预测任务复杂度;其次,针对各子任务,设计一种自组织模糊神经网络(self-organizing fuzzy neural network,SOFNN)构建子模型,通过神经元增删机制和二阶学习算法提高子模型的学习效率和学习精度;然后,提出了一种基于注意力机制的子模型整合策略,进一步提高预测模型的泛化性能;最后,通过基准实验Mackey-Glass时间序列预测和北京某MSWI厂实际数据验证了AMNN的可行性和有效性。Real-time and accurate measurement of NO_(x)emissions is indispensable to achieve closed-loop control of the denitrification process during municipal solid waste incineration(MSWI).To this end,this paper proposes a NO_(x)emission prediction method for the MSWI process based on attention modular neural network(AMNN).First,it simulates the“divide and conquer”characteristics of the brain network in processing complex tasks,and uses the fuzzy C-means(FCM)clustering algorithm to divide the task to be predicted into multiple subtasks,thereby reducing the complexity of the prediction task.Second,to handle the sub-tasks efficiently,a self-organizing fuzzy neural network(SOFNN)is designed to construct the sub-models,in which a growing and pruning algorithm and an improved second-order learning algorithm work together to ensure both the learning efficiency and accuracy.Then,the attention mechanism is utilized to integrate the sub-models during the testing or application stages,which can further improve the generalization performance of this AMNN-based prediction model.Finally,the proposed prediction method is verified by Mackey-Glass time series and the real data from a MSWI plant in Beijing.
关 键 词:城市固废焚烧 模块化神经网络 注意力机制 NOx排放预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145