检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔杨[1] 朱晗 王议坚 张璐[2] 李扬[1] CUI Yang;ZHU Han;WANG Yijian;ZHANG Lu;LI Yang(Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education,Northeast Electric Power University,Jilin 132012,China;College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China)
机构地区:[1]东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012 [2]中国农业大学信息与电气工程学院,北京100083
出 处:《电力自动化设备》2024年第4期164-170,共7页Electric Power Automation Equipment
基 金:现代电力系统仿真控制与绿色电能新技术教育部重点实验室开放课题(MPSS2021-09);吉林省自然科学基金资助项目(YDZJ202101ZYTS149)。
摘 要:基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘数据间的局部相关性,获取高维特征。初始负荷预测模块由自注意力编码解码网络和前馈神经网络构成,利用自注意力机制对高维特征进行自注意力编码,获取数据间的全局相关性,从而模型能根据数据间的耦合关系保留混有非时序因素数据中的重要信息,通过解码模块进行自注意力解码,并利用前馈神经网络回归初始负荷。引入残差机制构建负荷优化模块,生成负荷残差,优化初始负荷。算例结果表明,所提方法在预测精度和预测稳定性方面具有优势。The sequence model based on deep learning is difficult to deal with load data mixed with nontemporal factors,which leads to insufficient forecasting precision.A short-term power load forecasting method based on convolutional neural network(CNN),self-attention encoder-decoder network(SAEDN)and residualrefinement(Res)is proposed.The feature extraction module is composed of a two-dimensional convolutional neural network,which is used to mine the local correlation between data and obtain the high-dimensional features.The initial load forecasting module is composed of a self-attention encoder-decoder network and a feedforward neural network.The self-attention mechanism is used for self-attention encoding of high-dimen⁃sional features,the global correlation between data is obtain,thus the model is able to retain important information in the data mixed with non-temporal factors according to the coupling relationship between data.The self-attention decoding is performed by the decoding module,and the feedforward neural network is used for the initial load regression.The residual mechanism is introduced to build the load optimization module,the residual load is generated,and the initial load is optimized.The example results show that the proposed method has advantages in terms of forecasting accuracy and forecasting stability.
关 键 词:短期电力负荷预测 卷积神经网络 自注意力机制 残差机制 负荷优化
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117