部分均匀环境中训练样本不足时的贝叶斯子空间检测器  被引量:1

Bayesian subspace detector with limited training data in partially homogeneous environments

在线阅读下载全文

作  者:周喆 刘维建[3] 吴云韬[1,2] 郑岱堃[3] 巩朋成 ZHOU Zhe;LIU Weijian;WU Yuntao;ZHENG Daikun;GONG Pengcheng(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China;Hubei Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430205,China;Air Force Early Warning Academy,Wuhan 430019,China)

机构地区:[1]武汉工程大学计算机科学与工程学院,湖北武汉430205 [2]武汉工程大学智能机器人湖北省重点实验室,湖北武汉430205 [3]空军预警学院,湖北武汉430019

出  处:《信息对抗技术》2024年第2期38-45,共8页Information Countermeasures Technology

基  金:国家自然科学基金资助项目(62071482,62071172);湖北省自然科学基金资助项目(2023AFA035);湖北省重点研发计划项目(2022BAA052);湖北三峡实验室开放基金资助项目(SC215001);湖北省教育厅重点项目(D20221504);湖北省教育厅科学技术研究项目(B2022062)。

摘  要:为了解决部分均匀环境中训练数据不足时的子空间信号检测难题,采用贝叶斯理论,将噪声协方差矩阵建模为逆威沙特分布,并采用广义似然比准则(generalized likelihood ratio test,GLRT)、Rao准则和Wald准则设计自适应检测器,结果表明3种准则得到相同的结果。基于仿真及实测数据验证了所提检测器的有效性,并得出了影响检测性能的关键物理量。To solve the problem of subspace signal detection in partially homogeneous environment with limited training data,the Bayesian theory was adopted by modelling the unknown covariance matrix as an inverse Wishart distribution.Then,an adaptive detector was designed according to the generalized likelihood ratio test(GLRT),Rao test and Wald test.Numerical examples of simulations and real data have demonstrated that the proposed detector can provide better detection performance than those existing detectors.The key physical quantities that affect the detection performance were also obtained.

关 键 词:目标检测 GLRT Rao准则 Wald准则 

分 类 号:TN951[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象