检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑旭康 李志忠[1] 秦俊豪 Zheng Xukang
机构地区:[1]广东工业大学信息工程学院,广东广州510006
出 处:《江苏农业科学》2024年第5期192-201,共10页Jiangsu Agricultural Sciences
基 金:广东省自然科学基金(编号:2019A1515011371);广东省省级科技计划(产学研)(编号:2016B090918031)。
摘 要:植物病害的检测与识别是一个日益发展的研究领域,随着机器学习和深度学习概念的不断介入,为农业的发展提供了重要的技术支持。然而,目标检测技术存在着带标注数据获取成本高,且需要大量的人工来对数据进行标注等问题,给技术的实际应用造成了一定的阻碍。为解决在使用少量已标注数据及大量未标注数据进行训练模型从而提高准确率的问题,提出一种YOLO目标检测结合self-training半监督学习的方法,并且针对现有的YOLO v3-Tiny目标检测网络在半监督学习基础上准确率相比于监督学习较低的问题,对原有的YOLO v3-Tiny模型进行了改进。首先,使用空间金字塔池化结构对主干网络的多尺度特征进行融合;其次,将YOLO v3-Tiny检测头部分的标准卷积层替换成GSConv;最后,运用BiFPN结构对中间部分的特征与检测头部分的多尺度特征进行双向融合。本研究提出的基于半监督学习的改进型YOLO v3-Tiny网络可以快速准确地检测出梨叶上的病斑,在试验中,准确度、召回率、平均精度分别达到97.07%、93.78%、97.51%,对于快速准确地诊断出梨叶病斑的危害程度并且及时进行防治具有十分重要的意义。
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249