基于开关卡尔曼滤波的叶轮故障振动信号特征提取  被引量:2

Feature Extraction of Impeller Fault Vibration Signal Based on Switched Kalman Filter

在线阅读下载全文

作  者:袁艳 李峰 王东 YUAN Yan;LI Feng;WANG Dong(School of Mechanical and Electrical Engineering,Xi'an Traffic Engineering Institute,Xi'an 710399,China;School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Xi'an Research Institute,China Coal Science and Industry Group,Xi'an 710076,China)

机构地区:[1]西安交通工程学院机械与电气工程学院,陕西西安710399 [2]西安交通大学机械工程学院,陕西西安710049 [3]中国煤炭科工集团西安研究院,陕西西安710076

出  处:《机械制造与自动化》2024年第2期67-70,共4页Machine Building & Automation

基  金:西安交通工程学院中青年基金项目(2022KY-09)。

摘  要:为了提高滤波器下故障信号时域波形有效信息的提取能力,设计一种开关卡尔曼滤波算法应用到叶轮故障振动信号特征提取领域。预测出所有时间点监测数据最可能呈现出的状态,将噪声除去且有效辨别各冲击成分,进一步加强信号的信噪比。仿真信号结果表明,滤波后信噪比接近于噪声添加后的信噪比,脉冲辨别成效显著。试验验证结果表明,测量得到信号中有着显著的噪声,各个时刻评判出的信号成分都与现实情况相符。该研究可以拓宽到其他的机械传动领域,且具有很好的市场应用价值。In order to improve the effective information extraction ability of fault signal time-domain waveform under filter,a switched Kalman filter algorithm was designed and applied to the feature extraction field of impeller fault vibration signal.The most likely state of monitoring data at all time points was predicted,the noise was removed and each impact component was effectively distinguished,and the signal to noise ratio was further strengthened.The simulation signal results show that the signal to noise ratio after filtering should be close to the noise ratio after adding noise,and the pulse discrimination effect is remarkable.The experimental verification results indicate that there is a significant noise in the measured signal,and the components of the signal judged at every moment are consistent with the reality.This research can be extended to other fields of mechanical transmission and has good market application value.

关 键 词:叶轮 开关卡尔曼滤波 特征提取 噪声信号 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象