检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏治越 李浩 舒清态 席磊 宋涵玥 邱霜 杨泽至 Wei Zhiyue;Li Hao;Shu Qingtai;Xi Lei;Song Hanyue;Qiu Shuang;Yang Zezhi(College of Forestry,Southwest Forestry University,Kunming Yunnan 650233,China;United Front Work Department of the Party Committee,Southwest Forestry University,Kunming Yunnan 650233,China)
机构地区:[1]西南林业大学林学院,云南昆明650233 [2]西南林业大学党委统战部,云南昆明650233
出 处:《西南林业大学学报(自然科学)》2024年第2期127-134,共8页Journal of Southwest Forestry University:Natural Sciences
基 金:云南省农业联合专项重点项目(202301BD070001-002)资助;国家自然科学基金项目(31860205,31460194)资助;云南省教育厅科学研究基金项目(2021Y249)资助。
摘 要:以云南香格里拉市为研究区,基于ICESat–2/ATLAS数据,采用随机森林回归、梯度提升树回归及最近邻回归的方法分别建立遥感森林郁闭度估测模型,选择最优模型反演研究区光斑内的森林郁闭度。结果表明:采用随机森林建模估测森林郁闭度时效果最好,其R^(2)为0.9446,RMSE为0.0560,P为90.60%。研究得到香格里拉市内74873个有效林地光斑对应的郁闭度预测值,结合光斑中心坐标得到全市内所有光斑森林郁闭度的空间分布图。研究结果可为低纬度高海拔地区森林郁闭度遥感估测提供参考。Taking Shangri-La City,Yunnan Province as the research area,based on ICESat‒2/ATLAS data,the remote sensing forest canopy density estimation models were established by random forest regression,gradient boosting tree regression and nearest neighbor regression,respectively.The optimal model was selected to invert the forest canopy closure within the study area spots.The results showed that random forest modeling was the best method to estimate forest canopy closure,the coefficient of determination(R^(2))was 0.9446,mean square error(RMSE)was 0.0560 and the prediction accuracy(P)was 90.60%.The predicted values of canopy closure corresponding to 74873 effective forest spots in Shangri-La City were obtained,and the spatial distribution map of canopy closure of all forest spots in the city was obtained by combining the spot center coordinates.The results can provide a reference for remote sensing estimation of forest canopy closure at low-high altitude areas.
分 类 号:S758[农业科学—森林经理学] S771.8[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127