基于BA-BP的汽车同步器齿毂误差溯源  被引量:2

Tooth hub error tracing of automobile synchronizer based on BA-BP

在线阅读下载全文

作  者:刘永生 李进宁 赵锦 张心卉 惠记庄[1] 陈一馨[1] Liu Yongsheng;Li Jinning;Zhao Jin;Zhang Xinhui;Hui Jizhuang;Chen Yixin(School of Construction machinery,Chang'an University,Xi'an 710064,China)

机构地区:[1]长安大学工程机械学院,西安710064

出  处:《电子测量技术》2024年第3期77-83,共7页Electronic Measurement Technology

基  金:陕西省科技重大专项(2018zdzx01-01-01)、陕西省自然科学基金(2022JM-295,2022JQ-576)项目资助。

摘  要:同步器齿毂是汽车变速器装置的重要零件,其加工质量对变速器的性能、可靠性有直接影响。针对人工经验判断齿毂误差源范围效率较低的问题,本文提出一种基于蝙蝠算法优化BP神经网络的误差溯源方法,分析齿毂加工过程中的误差来源,利用蝙蝠算法对权值和阈值进行优化,获取最优值后构造BA-BP误差溯源模型,并采集数据样本对模型进行验证并与未优化之前的BP神经网络的误差溯源方法进行对比。与未优化之前BP神经网络溯源模型准确率83.56%相比,优化后的准确率为96.34%,该方法使溯源准确率明显提高,支持生产人员对后续的超差工件进行误差原因追溯,对生产过程中存在的问题直接进行处理排除,提高生产效率。As an important part of automobile transmission device,the machining quality of synchronizer tooth hub has a direct impact on the performance and reliability of the transmission.Aiming at the problem of low efficiency in judging the range of tooth hub error source by manual experience,this paper proposed an error tracing method based on bat algorithm to optimize BP neural network.The error sources in the tooth hub machining process were analyzed,and the bat algorithm was used to optimize the weights and thresholds.The BA-BP error tracing model was constructed after obtaining the optimal value,data samples were collected to verify the model and compared with the error traceability method of BP neural network before optimization.Compared with the accuracy of the BP neural network traceability model before the optimization was 83.56%,the optimized accuracy was 96.34%,which significantly improved the traceability accuracy,this method allows the production personnel to trace the error causes of the subsequent out-of-tolerance workpieces,which is convenient to directly deal with and eliminate the problems in the production process,so as to improve the production efficiency.

关 键 词:同步器齿毂 误差溯源 智能制造 BP神经网络 蝙蝠算法 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP311.1[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象