检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李青[1] 张劭玮 罗斯伦 李炬晨 成海超 卢丞一 LI Qing;ZHANG Shaowei;LUO Silun;LI Juchen;CHENG Haichao;LU Chenyi(Tianjin Institute of Power Sources,Tianjin 300384,China;Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China)
机构地区:[1]中国电子科技集团公司第十八研究所,天津300384 [2]西北工业大学,陕西西安710072
出 处:《储能科学与技术》2024年第4期1205-1215,共11页Energy Storage Science and Technology
基 金:国家重点研发计划项目(2020YFB1313200,2022YFC2805200)。
摘 要:本研究提出了一种基于反向传播神经网络(BPNN)和自适应无迹卡尔曼滤波器(AUKF)的SOC(state of charge)估计方法。首先针对电池SOC与端电压之间在不同温度下的关系,研究设计了一系列温度补偿策略,以提高在低温、低SOC条件下的估计精度。其次,利用反向传播神经网络(BPNN)建立了一个耦合了温度补偿策略的电池模型。这个模型能更好地适应低温和低SOC条件下的电池状态变化,提高了SOC估计的准确性。最后,基于BPNN电池模型建立了BPNN-AUKF的SOC估计框架,通过利用测量值与测量预测值之间的信息和残差序列,对系统过程和测量噪声协方差进行估计修正。通过实验验证,发现该方法在低温环境下具有明显优势,相比传统方法能够更准确地估计电池的SOC,且具备较好的泛化能力。这种基于BPNN-AUKF方法的SOC估计器不仅适用于自主无人潜水器(AUV),而且对于其他在复杂环境中工作的车辆也具有广泛的应用价值。This study proposes a state of charge(SOC)estimation method based on backpropagation neural network(BPNN)and adaptive unscented Kalman filter(AUKF).Firstly,a series of temperature compensation strategies were studied and designed to improve the estimation accuracy under low temperature and low SOC conditions,focusing on the relationship between battery SOC and terminal voltage at different temperatures.Secondly,a battery model coupled with temperature compensation strategy was established using backpropagation neural network(BPNN).This model can better adapt to battery state changes under low temperature and low SOC conditions,improving the accuracy of SOC estimation.Finally,a SOC estimation framework for BPNN-AUKF was established based on the BPNN battery model.By utilizing the information and residual sequences between measured and predicted values,the system process and measurement noise covariance were estimated and corrected.Through experimental verification,it was found that this method has significant advantages in low-temperature environments.Compared with traditional methods,it can more accurately estimate the SOC of batteries and has good generalization ability.This SOC estimator based on BPNN-AUKF method is not only suitable for autonomous unmanned underwater vehicles(AUV),but also has broad application value for other vehicles working in complex environments.
关 键 词:SOC估算 自适应无迹卡尔曼滤波器 温度补偿策略 神经元网络模型 自主水下航行器
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229