量子人工蜂群优化的盲源分离算法  被引量:1

Blind Source Separation Algorithm Based on Quantum Artificial Bee Colony Optimization

在线阅读下载全文

作  者:程静 王荣杰[1,2] CHENG Jing;WANG Rongjie(School of Marine Engineering,Jimei University,Xiamen 361021,China;Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,Xiamen 361021,China)

机构地区:[1]集美大学轮机工程学院,福建厦门361021 [2]福建省船舶与海洋工程重点实验室,福建厦门361021

出  处:《集美大学学报(自然科学版)》2024年第1期64-77,共14页Journal of Jimei University:Natural Science

基  金:国家自然科学基金项目(51879118)。

摘  要:为了实现分离多种服从不同分布类型的源信号,将一种改进的量子人工蜂群方法用于优化盲源分离算法。在标准量子人工蜂群算法的基础上,引入混沌优化算子生成初始解,使初始种群的解均匀分布在可行解空间上;在搜索阶段引入动态的邻域因子和遗忘因子,控制寻优方向,提高算法的收敛速度和寻优能力;以信号峰度构造目标函数,利用改进的量子人工蜂群方法对目标函数寻优,获得分离矩阵,实现混合信号的分离。仿真结果表明,所提算法能够分离亚高斯分布、超高斯信号及两者的混合信号,且在收敛速度和分离精度上均优于传统算法。In order to achieve the separation of source signals subject to arbitrary distribution,an improved quantum artificial bee colony method was proposed for optimizing the blind source separation algorithm.First,on the basis of the standard quantum artificial bee colony algorithm,a chaotic optimization operator was introduced to generate the initial solution,so that the solutions of the initial population were uniformly distributed on the feasible solution space;Second,dynamic neighborhood factor and forgetting factor were introduced in the search stage to control the optimization direction,improving the convergence speed and optimization ability;Finally,the objective function was constructed based on signal kurtosis,and the separation matrix was obtained by optimizing the objective function using the improved quantum artificial bee colony method and hence one could realize the separation of mixed signals.The simulation results showed that the proposed algorithm was able to separate sub-Gaussian distribution,super-Gaussian signal and the mixed signal of both,and it outperforms the traditional algorithm in terms of convergence speed and separation accuracy.

关 键 词:盲源分离 量子人工蜂群算法 峰度 超高斯分布 亚高斯分布 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象