检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈乔松 黄泽锰[1,2] 胡静 王进 邓欣[1,2] CHEN Qiaosong;HUANG Zemeng;HU Jing;WANG Jin;DENG Xin(School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China;Key Laboratory of Data Engineering and Visual Computing,Chongqing University ofPosts and Telecommunicatioins,Chongqing 400065,P.R.China)
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065 [2]重庆邮电大学数据工程与可视计算重点实验室,重庆400065
出 处:《重庆邮电大学学报(自然科学版)》2024年第2期383-392,共10页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:国家重点研发项目(2022YFE0101000)。
摘 要:有效的特征交互,对于工业推荐系统中点击通过率(click-through-rate,CTR)预估的准确性起着至关重要的作用。以往并行结构的CTR预估模型通过将独立的浅层模型和深层模型并行连接,以此来学习特征的低阶交互和高阶交互。但是,这些模型存在浅层模型准确性低、未考虑特征交互时的多语义问题、参数过多、深层模型过度泛化等问题。基于上述问题,提出了一种基于域矩阵因子分解机的点击通过率预估增强网络,通过引入域矩阵优化浅层模型中的交互,提高运算效率,并在深层模型的DNN层与层之间增加了桥接模块,在每层高阶交互后增强对原始特征的记忆能力,将浅层模型和深层模型的结果相加并归一化得到预测值。该模型在Criteo、KKBox、Frappe和MovieLens数据集上进行了大量实验,展现了优秀的预测能力。Effective feature interaction plays a vital role in the accuracy of click-through-rate(CTR)estimation in industrial recommendation systems.Previous CTR prediction models with a parallel structure learn low-order and high-order interactions of features by connecting independent shallow models and deep models in parallel.However,these models have problems such as low accuracy of shallow models,failure to consider the multi-semantic problem of feature interaction,excessive parameters,and over-generalization of deep models.Based on the above problems,this paper proposes an enhanced network for CTR prediction based on field-matrixed factorization machines.It introduces domain matrix to optimize the interaction in shallow models,improves the efficiency of computation,and adds a bridge module between the DNN layers of deep models to enhance the memory ability of original features after each high-order interaction.The results of shallow and deep models are added and normalized to obtain the predicted value.The model has undergone extensive experiments on Criteo,KKBox,Frappe,and MovieLens datasets,demonstrating excellent predictive capabilities.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44